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DIFFERENT VOLUME COMPUTATIONAL METHODS OF

GRAPH POLYTOPES

Hyeong-Kwan Ju, Sangwook Kim, and Daeseok Lee

Abstract. The aim of this work is to introduce several different vol-

ume computational methods of graph polytopes associated with various
types of finite simple graphs. Among them, we obtained the recursive

volume formula (RVF) that is fundamental and most useful to compute
the volume of the graph polytope for an arbitrary finite simple graph.

1. Introduction

Bóna, Ju and Yoshida [2] enumerated certain weighted graphs with the fol-
lowing conditions: For a given positive integer k, a nonnegative integer n and
a simple graph G = (V G,EG) with V G = [n], where [n] := {1, 2, . . . , n} and
[n]∗ := [n] ∪ {0}, we consider the set

W (k;G) := {α = (k1, . . . , kn) ∈ ([k]∗)
n | ij ∈ EG⇒ ki + kj ≤ k}.

An element in W (k;G) is called a (vertex-) weighted graph. In fact, the number
of weighted graphs is given by the Ehrhart polynomial of some convex polytope
in a unit n-hypercube. Such a convex polytope is determined uniquely by the
given finite simple graph as follows: Let G = (V G,EG) be a simple graph
with V G = [n]. Then the graph polytope P (G) associated with the graph G is
defined as

P (G) := {(x1, x2, . . . , xn) ∈ [0, 1]n | ij ∈ EG⇒ xi + xj ≤ 1}.

Our main concerns in this article are the computational results on the volumes
of graph polytopes associated with many types of graphs using several different
methods. In order to obtain the volume of a graph polytope we need a certain
kernel function K : [0, 1]2 → R defined by the following:

K(s, t) :=

{
1, s+ t ≤ 1,
0, elsewhere.
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Then the volume vol(P (G)) of the polytope P (G) is

vol(P (G)) =

∫
Qn

∏
ij∈EG

K(xi, xj) dx1dx2 · · · dxn,

where Qn = [0, 1]n is the n-dimensional unit hypercube. For simplicity, we use
the notion dx = dx1dx2 · · · dxn if there is no confusion. The volume of a graph
polytope P (G) will be denoted by vol(G) rather than vol(P (G)). From now
on, all graphs we mention are finite simple graphs and all polytopes are convex.

This paper is organized as follows: Section 2 introduces a recursive volume
formula for the volume of a graph polytope and volume formulae for graph
polytopes associated with various types of graphs. Section 3 describes the
graph joins and the corresponding volume formula. The volume of the graph
polytope associated with a bipartite graph with certain symmetry is dealt in
Section 4. In Section 5 we use the operator theory to find values for interesting
series. In the last section we mention another way to compute the volumes
of graph polytopes, which uses the Ehrhart polynomial and series of a graph
polytope.

2. Recursive volume formula

The recursive volume formula (RVF for short), which will be introduced
in Theorem 2.3, is a fundamental technique since it is effectively used in the
volume computation of the graph polytope corresponding various graphs, as
shown in the succeeding examples. It is, however, NP-hard problem on the
number of vertices, like TSP algorithm, from the point of view of computational
complexity.

Next two lemmas will be used to prove the RVF.

Lemma 2.1 (polytope partitioning). Let P be an n-dimensional polytope in
Rn containing a point x. For a facet F of P , let d(x, F ) be the shortest distance
from x to a point in the affine span of F and vol(F ) be the (n−1)-dimensional
volume of F . Then

vol(G) =
1

n

∑
F

d(x, F )vol(F ),

where the sum runs over all facets F of P (G).

Proof. Since P can be decomposed as a union of conv{x, F} where the union
is over all facets F of P (G), the result follows. �

Lemma 2.2. If a graph G has no isolated vertex, then the graph polytope P (G)
has no facet of the form xi = 1. In other words, P (G) is only composed of facets
of form xk = 0 or xi + xj = 1 for ij ∈ E.

Proof. Since G has no isolated vertex, each vertex has at least one adjacent
vertex. The result follows from the definition of the graph polytope. �
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Theorem 2.3 (RVF). Let G = (V G,EG) be a graph with the vertex set
V G = [n] and having no isolated vertex. Then

vol(G) =
1

2n

n∑
i=1

vol(G− i),

where G− i is the graph with the vertex set [n] \ {i} and, accordingly, with the
inherited edge set in the original edge set EG.

Proof. Let x = ( 1
2 ,

1
2 , . . . ,

1
2 ) ∈ P (G). Then d(x, F ) = 1

2 for the facet F in the
hyperplane xi = 0 (hence F = P (G− i) in this hyperplane) and d(x, F ) = 0 for
all other facets F since x ∈ F . Note that vol(G− i) is the (n− 1)-dimensional
volume of the graph polytope P (G − i). By Lemmas 2.1 and 2.2 we have the
desired formula. �

The RVF can be used to obtain the volume formulas for several classes of
graphs. We provide them with ideas of the proof. For detail, see [5].

Corollary 2.4. Let Ln = ([n], ELn) be the path with ELn := {i(i + 1) | i ∈
[n− 1]}. Then

vol(Ln) =
En
n!
,

where En is the n-th Euler number. Hence its generating function is∑
n≥0

vol(Ln)xn = secx+ tanx.

Proof. Since Ln − i is a path or a disjoint union of two paths, the RVF can be
used to see that n!vol(Ln) satisfies the same recurrence relation as En. �

Corollary 2.5. Let Cn = ([n], ECn) be the cycle with ECn := {i(i+1) | i ∈ [n]}
where n+ 1 := 1. Then

vol(Cn) =
1

2

En−1
(n− 1)!

.

Hence its generating function is∑
n≥1

vol(Cn)xn =
x(secx+ tanx)

2
.

Proof. Removing a vertex in the cycle Cn results in a path Ln−1. Hence RVF
and Corollary 2.4 imply both of conclusions. �

Corollary 2.6. Let Kn = ([n], EKn) be the complete graph with the edge set
EKn := {ij | i, j ∈ [n]}. Then

vol(Kn) = 21−n.

Hence its generating function is∑
n≥1

vol(Kn)xn =
2x

2− x
.
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Proof. By RVF, vol(Kn) = n·vol(Kn−1)
2n = vol(Kn−1)

2 . Since vol(K1) = 1, the
conclusion follows easily. �

Corollary 2.7. Let Ks,t = ([s+ t], EKs,t) be the complete bipartite graph with
EKs,t := {ij | i ∈ [s], j ∈ {s+ 1, s+ 2, . . . , s+ t}}. Then

(1) vol(Ks,t) =
1(
s+t
s

) .
Proof. Since vol(Ks,0) = 0 = vol(K0,t) and

vol(Ks,t) =
s · vol(Ks−1,t) + t · vol(Ks,t−1)

2(s+ t)
,

we have the required formula by induction. �

3. Volumes of the graph joins

In this section, we calculate the volume of the graph polytope of the join
of graphs. The join of graphs H and K is the graph G = (V G,EG) where
V G = V H ∪ V K and EG = EH ∪ EK ∪ {xy |x ∈ V H, y ∈ V K}. We denote
the join of graphs H and K simply by H +K. We also provide another way to
compute the volumes of the graph polytopes for complete graphs and complete
bipartite graphs.

Definition (sliced volume). Let G = ([n], EG) be a graph and r ∈ [0, 1]. The
sliced volume vol(G, r) is defined by

vol(G, r) :=

∫
[0,r]n

∏
ij∈EG

K(xi, xj)dx,

where K(·, ·) is defined as

K(s, t) :=

{
1, s+ t ≤ 1,
0, elsewhere.

It is obvious that vol(G) = vol(G, 1). Note that vol(G, r) = rn if 0 ≤ r ≤ 1
2 .

Lemma 3.1. Let f : [0, c]n → R and g : [0, c]m → R be continuous functions
such that F (s) =

∫
[0,s]n

f(x1, . . . , xn)dx and G(s) =
∫
[0,s]m

g(y1, . . . , ym)dy are

continuously differentiable for any 0 ≤ s ≤ c. For any continuous function
k : [0, c]2 → R, we have∫∫

[0,c]n+m

f(x1, . . . , xn)g(y1, . . . , ym)k(max(x1, . . . , xn),max(y1, . . . , ym))dxdy

=

∫ c

0

∫ c

0

d

ds
F (s)

d

dt
G(t)k(s, t)dsdt.

Proof. For each N ∈ N, get partitions of interval 0 = s0 < s1 < · · · < sN = c
and 0 = t0 < t1 < · · · < tN = c such that

lim
N→∞

max {si − si−1 | 1 ≤ i ≤ N} = lim
N→∞

max {ti − ti−1 | 1 ≤ i ≤ N} = 0,
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and sample points x∗i ∈ [0, si]
n \ [0, si−1]n, y∗i ∈ [0, ti]

m \ [0, ti−1]m(1 ≤ i ≤ n).
We can divide the sum as follows:

I =

N∑
i=1

N∑
j=1

∫∫
([0,si]n\[0,si−1]n)×([0,tj ]m\[0,tj−1]m)

f(x)g(y)k(‖x‖∞ , ‖y‖∞)dxdy.

Let δN = max {si − si−1 | 1 ≤ i ≤ N} and δ′N = max {ti − ti−1 | 1 ≤ i ≤ N}.
Note that | ‖x∗i ‖∞ − x| <

√
nδN for all x ∈ [0, si]

n \ [0, si−1]n and |
∥∥y∗j∥∥∞ −

y| <
√
mδ′N for all y ∈ [0, tj ]

m \ [0, tj−1]m. By the uniform continuity of the
continuous function k, for any ε > 0, we can take N large enough so that
|x − x′| <

√
nδN and |y − y′| <

√
mδ′N implies |k(x, y) − k(x′, y′)| < ε. Let

M =
∫ ∫

[0,c]n×[0,c]m |f(x)||g(y)|dxdy. Then we get

|I −
N∑
i=1

N∑
j=1

k(‖x∗i ‖∞ ,
∥∥y∗j∥∥∞)(F (si)− F (si−1)(G(tj)−G(tj−1))| < εcn+mM.

By the mean value theorem for F and G, we have

|I −
N∑
i=1

N∑
j=1

k(‖x∗i ‖∞ ,
∥∥y∗j∥∥∞)

d

ds
F (s∗i )

d

dt
G(t∗j )| < εcn+mM.

Since we assumed dF
ds and dG

dt to be continuous, M ′ =
∫ c
0

∫ c
0
| ddsF (s) ddtG(t)|dsdt

exists. Note that ‖x∗i ‖∞ ∈ [si−1, si] and
∥∥y∗j∥∥∞ ∈ [tj−1, tj ]. Applying the

uniform continuity of k again, we have

|I −
N∑
i=1

N∑
j=1

k(s∗i , t
∗
j )
d

ds
F (s∗i )

d

dt
G(t∗j )| < εcn+m(M +M ′).

Taking the limit N →∞, we have

|I −
∫ c

0

∫ c

0

d

ds
F (s)

d

dt
G(t)k(s, t)dsdt| < εcn+m(M +M ′)

for arbitrary ε > 0, which concludes the proof. �

Lemma 3.2. For x1, x2, . . . , xn, y1, y2, . . . , ym ∈ [0, 1], we have
n∏
i=1

m∏
j=1

K(xi, yj) = K(max {xi|1 ≤ i ≤ n} ,max {yj |1 ≤ j ≤ m}).

Proof. Divide the cases.

• When there exist 1 ≤ k ≤ n and 1 ≤ l ≤ m such that xk + yl > 1:
The left hand side becomes 0 since K(xk, yl) = 0 have been multiplied.
Since max {xi}+ max {yj} ≥ xk + yl > 1, the right hand side is also 0.

• Otherwise:
The left hand side is 1 since xi + yj ≤ 1 for all i, j. On the other hand,
the right hand side is 1 since there exists k, l such that xk = max {xi},
yl = max {yj}. �
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The next theorem gives us a volume formula for the graph polytope associ-
ated with the joined graph.

Theorem 3.3. For any graphs G and H, the sliced volume of the graph polytope
associated with the graph G+H is

vol(G+H, r) =

∫ r

0

∫ r

0

d

ds
vol(G, s)

d

dt
vol(H, t)K(s, t)dsdt.

Proof. The result follows simply from Lemmas 3.1 and 3.2. �

Theorem 3.4. Let 1
2 ≤ r ≤ 1. Then the sliced volume of the graph polytope

P (Km,n) is given by the formula

vol(P (Km,n), r) = rn(1− r)m +m

i∑
i=0

(
n

i

)
(−1)n

rm+i − (1− r)m+i

m+ i
.

Proof. Note that Km,n = Km+Kn, where Kn is the null graph with n vertices.

Since vol(Km, r) = rm,

vol(Km,n, r) =

∫ r

0

∫ r

0

( d
ds
vol(Km, s)

)( d
dt
vol(Kn, t)

)
K(s, t)dsdt

=

∫ r

0

∫ r

0

dsm

ds

dtn

dt
K(s, t)dsdt

=

∫ r

0

(dsm
ds

∫ r

0

K(s, t)
dtn

dt
dt
)
ds

=

∫ r

0

(dsm
ds

∫ min(1−s,r)

0

dtn

dt
dt
)
ds

=

∫ r

0

(dsm
ds

(min(1− s, r))n
)
ds

=

∫ 1−r

0

rn
dsm

ds
ds+

∫ r

1−r
(1− s)n ds

m

ds
ds

= rn(1− r)m +m

n∑
i=0

(
n

i

)
(−1)i

rm+i − (1− r)m+i

m+ i
.

�

Corollary 3.5. The volume of the graph polytope associated with the complete
bipartite graph Km,n is

(2) vol(Km,n) =

n∑
i=0

(
n

i

)
(−1)i

m

m+ i
.

Proof. Substitute r = 1 in Theorem 3.4. �

The following result is immediate, comparing Corollaries 2.7 and 3.5.



DIFFERENT VOLUME COMPUTATIONAL METHODS 1411

Corollary 3.6. For positive integers m and n,
n∑
i=0

(
n

i

)
(−1)i

m

m+ i
=

1(
m+n
n

) =

m∑
i=0

(
m

i

)
(−1)i

n

n+ i
.

Remark 3.7. According to Rudin [6], the beta function B(r, s) is defined as

B(r, s) =

∫ 1

0

xr−1(1− x)s−1dx =
Γ(r)Γ(s)

Γ(r + s)
,

where Γ(x) is the gamma function. Note that

vol(Km,n) = mB(m,n+ 1) = nB(m+ 1, n)

from the formula (1) and the definition of the beta function involving the
gamma function.

Since the associative law holds for joins, one can define kG := G+G+· · ·+G
(add k times).

Theorem 3.8 (multiple join of a graph). Let G be a graph with n vertices.
Then, for any positive integer k and 1

2 ≤ r ≤ 1,

d

dr
vol(kG, r) = k(1− r)n(k−1) d

dr
vol(G, r).

Proof. We have

vol(kG, r) =

∫ r

0

∫ r

0

( d
ds
vol(G, s)

)( d
dt
vol((k − 1)G, t)

)
K(s, t)dsdt

=

∫ r

0

d

ds
vol(G, s)

(∫ min(1−s,r)

0

d

dt
vol((k − 1)G, t)dt

)
ds

=

∫ r

0

d

ds

[
vol(G, s) · vol((k − 1)G,min(1− s, r))

]
ds

= (i) + (ii) + (iii),

where

(i) :=

∫ 1−r

0

vol((k − 1)G, r)
d

ds
vol(G, s)ds

= vol((k − 1)G, r)(1− r)n
(

0 ≤ 1− r ≤ 1

2

)
,

(ii) :=

∫ 1/2

1−r
vol((k − 1)G, 1− s) d

ds
vol(G, s)ds

=

∫ 1/2

1−r
vol((k − 1)G, 1− s)|V G|s|V G|−1ds,

(iii) :=

∫ r

1/2

vol((k − 1)G, 1− s) d
ds
vol(G, s)ds
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=

∫ r

1/2

(1− s)(k−1)|V G| d
ds
vol(G, s)ds.

Now, we denote d
drvol(kG, r) simply by ak. Then

ak =
d

dr
((i) + (ii) + (iii))

= (1− r)nak−1 − n(1− r)n−1vol((k − 1)G, r)

+ n(1− r)n−1vol((k − 1)G, r) + a1(1− r)(k−1)n

= (1− r)nak−1 + (1− r)(k−1)na1.

Let F (x, r) =
∑
k≥1 akx

k. Then, from the previous recursion formula we get

F (x, r) =
xa1

(1− (1− r)nx)2
=
∑
k≥1

ka1(1− r)(k−1)nxk.

Hence
d

dr
vol(kG, r) = k(1− r)(k−1)n d

dr
vol(G, r). �

Corollary 3.9. For the value 1
2 ≤ r ≤ 1, we have

vol(Kn, r) = 21−n − (1− r)n and vol(Kn) = 21−n.

Proof. Since Kn = nK1, the results follow from Theorem 3.8. �

The Turán graph T (nk, k) is a complete multipartite graph formed by parti-
tioning a set of nk vertices into k subsets of size n and connecting two vertices
by an edge if and only if they belong to different subsets. The following theorem
provides the volume of the graph polytope for a Turán graph T (nk, k).

Corollary 3.10. For the value 1
2 ≤ r ≤ 1, we have

vol(T (nk, k)) = 2−nk + k2−nk
1(
nk
n

) n−1∑
i=0

(
nk

i

)
.

Proof. Since T (nk, k) = kKn, Theorem 3.8 implies

d

dr
vol(T (nk, k), r) = k(1− r)n(k−1) d

dr
vol(Kn, r) = nkrn−1(1− r)n(k−1).

Thus

vol(T (nk, k)) = 2−nk + nk

∫ 1

1/2

rn−1(1− r)n(k−1)dr

= 2−nk + nk

∫ 0

1

(
− 1

2

)(
1− t

2

)n−1( t
2

)n(k−1)
dt

= 2−nk + nk2−nk
∫ 1

0

tn(k−1)(2− t)n−1dt
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= 2−nk + nk2−nk
n−1∑
i=0

(
n− 1

i

)∫ 1

0

tn(k−1)(1− t)idt

= 2−nk + nk2−nk
n−1∑
i=0

(
n− 1

i

)
(n(k − 1))! · i!

(n(k − 1) + i+ 1)!

= 2−nk + nk2−nk
n−1∑
i=0

1

n
(
nk
n

)( nk

n− 1− i

)

= 2−nk + k2−nk
1(
nk
n

) n−1∑
i=0

(
nk

i

)
.

�

4. Volume of bipartite graphs

In this section, we decompose the unit cube using permutations to obtain the
volume of the graph polytope associated with a bipartite graph. Let Sn be the
set of all permutations of [n]. We use the one-line notation σ = (σ1, σ2, . . . , σn)
for a permutation σ ∈ Sn defined by σ(i) = σi.

Definition. For a permutation σ ∈ Sn, let

[0, 1]nσ := {x = (x1, x2, . . . , xn) ∈ [0, 1]n|xσ1
≤ xσ2

≤ · · · ≤ xσn}.

Note that
[0, 1]n =

⋃
σ∈Sn

[0, 1]nσ

and each intersection of two distinct n-simplices [0, 1]nσ has measure 0 so that
for any measurable function f ,∫

[0,1]n
fdx =

∑
σ∈Sn

∫
[0,1]nσ

fdx

and∫
[0,1]nσ

fdx =

∫ 1

0

(∫ xσn

0

(∫ xσn−1

0

· · ·
(∫ xσ2

0

fdxσ1

)
· · · dxσn−2

)
dxσn−1

)
dxσn

by Fubini’s theorem.
Let B = (V B,EB) be a bipartite graph with V B = V1 t V2, where V1 =

{1, 2, . . . , n} and V2 = {v1, v2, . . . , vm}, and let Ni := {j ∈ V1 | jvi ∈ EB}.

Theorem 4.1. The volume of the graph polytope associated with the bipartite
graph B mentioned above is

vol(B) =
∑
σ∈Sn

n∏
i=1

1

i+
∑i
j=1 αj,σ

,

where αi,σ is the number of vertices in

{vk ∈ V2 |σ(i) ∈ Nk} \ (∪i−1j=1{vk ∈ V2 |σ(j) ∈ Nk}),
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which means the number of vertices in V2 where the smallest among σ−1 values
of its neighbors is i.

Proof. We have

vol(B) =

∫
[0,1]n

m∏
j=1

(1−max{xi | i ∈ Nj})dx

=
∑
σ∈Sn

∫
[0,1]nσ

m∏
j=1

(1−max{xi | i ∈ Nj})dx

=
∑
σ∈Sn

∫
[0,1]nσ

m∏
j=1

(min{1− xi | i ∈ Nj})dx

=
∑
σ∈Sn

∫
[0,1]n

rev(σ)

m∏
j=1

min{xi | i ∈ Nj}dx

=
∑
σ∈Sn

∫
[0,1]nσ

m∏
j=1

min{xi | i ∈ Nj}dx

=
∑
σ∈Sn

∫
[0,1]nσ

n∏
i=1

x
αi,σ
σ(i)dx

=
∑
σ∈Sn

∫ 1

0

(xαn,σσn

∫ xσn

0

[xαn−1,σ
σn−1

· · ·∫ xσ3

0

(xα2,σ
σ2

∫ xσ2

0

(xα1,σ
σ1

)dxσ1)dxσ2 · · · ]dxσn−1)dxσn

=
∑
σ∈Sn

n∏
i=1

1

i+
∑i
j=1 αj,σ

,

where rev(σ) = (σn, σn−1, . . . , σ2, σ1). �

An automorphism of a simple graph G = (V G,EG) is a permutation π of
V G which has the property that uv is an edge of G if and only if π(u)π(v) is
an edge of G.

Theorem 4.2. Let B = (V B,EB) be a bipartite graph with V B = V1 t V2.
Suppose that for any permutation π on V1, there exists a permutation σ on V2
such that the combination of π and σ induces an automorphism on G. Then

vol(P (B)) = n!

n∏
i=1

1

i+
∑i
j=1 αj

,

where αj = αj,σ when σ is the identity.

Proof. The symmetry of the graph B implies that all αi,σ’s are the same for
different σ ∈ Sn. The conclusion follows from Theorem 4.1. �
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Corollary 4.3. Let Bn be the graph that is obtained from the complete bipartite
graph Kn,n by deleting n disjoint edges. Then,

vol(Bn) =

(
1 +

1

n

)
1(
2n
n

) .
Proof. Since α1 = n − 1, α2 = 1, and αi = 0 for i ≥ 3, the result follows from
Theorem 4.2. �

Example 4.4. In particular, vol(B3) = 1
15 . Note that the bipartite graph B3

is the graph obtained from the 1-skeleton of the 3-cube.

5. An application related to the operator theory

We introduce here another interesting fact that uses the linear operator
theory to obtain the value of a series described in the theorem below. One of
the results related with the operator theory is the computation of the vol(Cn),
which is referred from Elkies [3]. We will restate a lemma regarding this.

We define Kn inductively as in the following:

K1(t, s) := K(t, s),

and

Kn(t, s) :=

∫ 1

0

K1(t, x)Kn−1(x, s)dx (n ≥ 2).

Let T : L2(0, 1) → L2(0, 1) be the linear operator with the kernel K1(·, ·) on
L2(0, 1) defined by

(3) (Tg)(t) =

∫ 1

0

K1(t, s)g(s)ds =

∫ 1−t

0

g(s)ds.

From the definition of Kn we see that Kn(·, ·) is the kernel function of the linear
operator Tn as follows:

(4) (Tng)(t) =

∫ 1

0

Kn(t, s)g(s)ds.

The next lemma gives the spectral decomposition of the linear operator T ,
and also of Tn. Its proof is immediate from the standard linear operator theory.
(See Elkies [3] or Hutson et al. [4].)

Lemma 5.1. The linear operator T is compact and self-adjoint on L2(0, 1).
Its eigenvalues are 2

π(4k+1) (k ∈ Z) and the corresponding eigenfunctions are

cos(π(4k+1)/2). Moreover, The linear operator Tn is compact and self-adjoint
on L2(0, 1). Its eigenvalues are ( 2

π(4k+1) )
n with same corresponding eigenfunc-

tions cos(π(4k + 1)/2). Each of the eigenvalues for T and Tn is simple.

Our main goal here is to find the value of certain formula using the operator
theory. In fact, it is the vol(P (Cn)) which is obtained from the RVF. By the
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simple calculations we can get the following formula from the definition of Kn
(see [3]):

(5) vol(Cn) =

∫ 1

0

Kn(t, t)dt.

It turns out that the right hand side of the formula (5) is the trace of a trace-
class operator Tn over the diagonal, and is equal to

∞∑
k=−∞

2n

(π(4k + 1))n
.

Note that this series is absolutely convergent for n ≥ 2. As a summary we have
the following theorem.

Theorem 5.2. For any integer n ≥ 2, the following holds:

∞∑
k=−∞

1

(4k + 1)n
=
πnvol(Cn)

2n
.

Example 5.3. For the case n = 3,

1− 1

33
+

1

53
− 1

73
+ · · ·+ (−1)m

(2m+ 1)3
+ · · · = π3vol(C3)

8
=
π3vol(K3)

8
=
π3

32
,

meanwhile, for the case n = 4,

1 +
1

34
+

1

54
+

1

74
+ · · ·+ 1

(2m+ 1)4
+ · · · = π4vol(C4)

16
=
π4vol(K2,2)

16
=
π4

96
.

6. Concluding remarks

In fact, we have another volume computational method which comes from
the Ehrhart polynomial of P (G). Let P be an integral convex polytope in
Rd. Then we call LP (t) = |tP ∩ Zd| the Ehrhart polynomial of P. A 0/1-
polytope is the convex hull of a certain subset of the vertices of the regular
cube Cd = [0, 1]d. It is known that, for a given 0/1-polytope P ,

vol(P ) = lim
t→∞

LP (t)

td
, where d = dim(P ),

or

f(1)

d!
, where

∞∑
t=0

LP (t)xt =
f(x)

(1− x)d+1
.

(Refer [1] or [7] about this.) If G is a bipartite graph with n vertices, then
its graph polytope P (G) is a 0/1-polytope of dimension n. Hence, we can get
the volume vol(G) from the Ehrhart polynomial LP (G)(t), which we can get by
using divided difference technique. (See Bóna et al. [2] for details.)
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