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UNITS, NILPOTENT ELEMENTS, AND UNIT-IFP RINGS

Sangwon Park and Sang Jo Yun

Abstract. We observe the structure of a kind of unit-IFP ring that is

constructed by Antoine, in relation with units and nilpotent elements.

This article concerns the same argument in a more general situation, and
study the structure of one-sided zero divisors in such rings. We also

provide another kind of unit-IFP ring.

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. The group of all units and the set of all
nilpotent elements in R are denoted by U(R) and N(R), respectively. The
polynomial ring with an indeterminate x over R is denoted by R[x].

Due to Bell [2], a ring R is said to be IFP if ab = 0 for a, b ∈ R implies
aRb = 0. A ring is usually called reduced if it has no nonzero nilpotent elements.
A ring is usually called Abelian if every idempotent is central. It is easily
checked that commutative rings and reduced rings are contained in the class
of IFP rings. IFP rings are shown easily to be Abelian. It is also easily shown
that if R is an IFP ring, then RaR is nilpotent for all a ∈ N(R), entailing
N∗(R) = N∗(R) = N(R), where N∗(R) and N∗(R) mean the upper nilradical
(i.e., the sum of all nil ideals) and the lower nilradical (i.e., the intersection of
all prime ideals) of R.

Following Kim et al. [5], a ring R is said to be unit-IFP if ab = 0 for a, b ∈ R
implies aU(R)b = 0. IFP rings are clearly unit-IFP, and the converse need
not hold by [5, Example 1.1]. Kim et al. provide various results for units
and nilpotent elements which are useful to the research of related topics. For
example, they show that Köthe’s conjecture (i.e., the upper nilradical contains
every nil left ideal) holds for unit-IFP rings in [5, Theorem 1.3(1)]. An element
u of R is called right regular if ur = 0 for r ∈ R implies r = 0. The left
regular can be defined similarly. An element is regular if it is both left and
right regular.

Let K be a field, n ≥ 2, and A = K〈a, b〉 be the free algebra generated
by the noncommuting indeterminates a, b over K. Following Antoine’s ring
construction in [1, Theorem 4.7], let I be the ideal of A generated by bn and
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set R = A/I. Kim et al. showed that R is a unit-IFP ring for the case of n = 2
in [5, Example 1.1], and Lee showed that R is a unit-IFP ring for the case of
n ≥ 3 in [7, Theorem 1.2].

In this article we can obtain these results in a more general situation as in
[1, Theorem 4.7].

Theorem. Let K be a field, n ≥ 2, and D be a set of noncommuting inde-
terminates of cardinality ≥ 2. Set A = K〈D〉 be the free algebra generated by
D over K. Let b ∈ D and I be the ideal of A generated by bn. Set R = A/I
and identify elements of A with their images in R for simplicity. Then R is a
unit-IFP ring such that

U(R) = {k + g + bpfbq | k ∈ K\{0}, g ∈ bK[b], f ∈ R, and

p, q ≥ 1 with p+ q ≥ n}.

Moreover R is a prime ring.

We can obtain [5, Example 1.1] and [7, Theorem 1.2] as corollaries of The-
orem.

Corollary. Let K be a field, n ≥ 2, and D be a set of noncommuting indeter-
minates of cardinality ≥ 2. Set A = K〈D〉 be the free algebra generated by D
over K. Let b ∈ D and I be the ideal of A generated by bn. Set R = A/I and
identify elements of A with their images in R for simplicity. Then

N(R) = {g + bpfbq | g ∈ bK[b], f ∈ R, and p, q ≥ 1 with p+ q ≥ n}.

Moreover N(R)n = 0.

Proof. The proof is done by Theorem and a similar argument to the proof of
[7, Theorem 1.3]. �

In Section 1, we prove the theorem for the case of n = 2; and in Section
2, we prove the theorem for the case of n ≥ 3. In what follows, we apply the
arguments in [1], [6], and [7] to the situation of this article. Given a set S, we
denote the cardinality of S by |S|. Let K be a field and R1, R2 be K-algebras.
R1 ∗K R2 denotes the ring coproduct of R1 and R2 over K.

The following lemma is a restatement of [3, Corollary 2.16] which does an
important role in this article.

Lemma ([1, Lemma 4.4]). Let S1 and S2 be D-algebras over a field D such
that any one-sided invertible element of either S1 or S2 is two-sided invertible,
and let S = S1 ∗D S2. Then:

(a) The group of units of S is generated by the units of S1 and S2 together
with elements of the form 1− γδε, where δ ∈ S and ε, γ ∈ Si for some i, such
that εγ = 0.

(b) If xy = 0 in S, then there exist a unit α ∈ S and sets U, V in some Si

with UV = 0 such that x ∈ SUα and y ∈ α−1V S.
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1. The proof of Theorem for the case of n = 2

Suppose n = 2. The case of |D| = 2 is proved by [5, Example 1.1] and [7,
Theorem 1.2]. So we assume |D| ≥ 3. Let D1 = D\{b} and R1 = K〈D1〉 be the

free algebra generated by D1 over K. Then R is isomorphic to K〈D1〉∗K K[b]
b2K[b]

that is the coproduct of R1 and R2 = K[b]
b2K[b] over K. We apply the argument

in [6]. The procedure is similar, but it is proceeded with writing in details for
completeness.

By Lemma (a), every unit in R is generated by the units of R1 and R2

together with elements of the form 1−γδε, where δ ∈ R and ε, γ ∈ Ri for some
i, such that εγ = 0. Note that U(R1) = K\{0} and U(R2) = {k1 + k2b | k ∈
K\{0} and k2 ∈ K}.

Suppose ε, γ ∈ R\{0}. Then ε, γ are contained in R2 because εγ = 0; hence
ε, γ ∈ Kb. Thus every unit is of the form k1 + k2b + brb with k1 ∈ K\{0},
k2 ∈ K and r ∈ R; that is,

U(R) = {k1 + k2b+ brb | ki ∈ K, k1 6= 0, and r ∈ R}.

Let αβ = 0 for α, β ∈ R\{0}. Then, by Lemma (b), α = r1f1u and β =
u−1f2r2 for some u ∈ U(R), f1 ∈ U , f2 ∈ V , and r1, r2 ∈ R, where U, V are
sets in some Ri with UV = 0. Here U, V are nonzero subsets; hence these must
be contained in R2 because UV = 0. It then follows U, V ⊆ Kb. This enables
us to write α = r1bu and β = u−1br2.

Now, letting u = k1 + (k2b + brb), we obtain u−1 = k−11 − k−21 (k2b + brb)
and furthermore

α = r1b(k1 + k2b+ brb) = r1k1b and β = (k−11 − k
−2
1 (k2b+ brb))br2 = bk−11 r2,

implying that α ∈ Rb and β ∈ bR.
Therefore R is a unit-IFP ring as can be seen by

αuβ = r1k1b(k1 + k2b+ brb)bk−11 r2 = 0 for all u = k1 + k2b+ brb ∈ U(R),

but R is not IFP because bab 6= 0 for b2 = 0.
We show next that R is prime. Suppose that αRβ = 0 for α, β ∈ R. Assume

on the contrary that α and β are both nonzero. Since αβ = 0, α = rb and
β = bs for some r, s ∈ R by the argument above. But 0 6= (rb)a(bs) = αaβ ∈
αRβ = 0, a contradiction. Consequently α = 0 or β = 0, showing that R is
prime.

2. The proof of Theorem for the case of n ≥ 3

Suppose n ≥ 3. The case of |D| = 2 is proved by [5, Example 1.1] and [7,
Theorem 1.2]. So we assume |D| ≥ 3. Let D1 = D\{b} and R1 = K〈D1〉 be the

free algebra generated by D1 over K. Then R is isomorphic to K〈D1〉∗K K[b]
bnK[b]

that is the coproduct of R1 and R2 = K[b]
bnK[b] over K. We apply the argument
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in the proof of [7, Theorem 1.2]. The procedure is similar in parts, but it is
proceeded with writing in details for completeness.

By Lemma (a), U(R) is generated by the units of R1 = K〈D1〉 and R2 =
K[b]/bnK[b], together with with elements of the form 1−γδε, where δ ∈ R and
γ, ε ∈ Ri for some i, such that εγ = 0.

Note that

U(R1) = U(K〈D1〉) = K\{0}, N(R1) = {0}, N(R2) = bK[b],

and

U(R2) = {k1 + f | k ∈ K\{0} and f ∈ bK[b]}.
Thus, if both γ and ε are nonzero, then they are contained in R2 because

εγ = 0. Hence we have that ε = bpf(b) and γ = bqg(b) with p + q ≥ n. But
γδε = bqg(b)δbpf(b) = bq[g(b)δf(b)]bp with g(b)δf(b) ∈ R. Therefore

U(R) = {k + g + bpfbq | k ∈ K\{0}, g ∈ bK[b], f ∈ R, and

p, q ≥ 1 with p+ q ≥ n}.

Suppose αβ = 0 for α, β ∈ R\{0}. Then, by Lemma (b), there exist u ∈
U(R) and nonzero subsets U, V in some Ri with UV = 0 such that α ∈ RUu
and β ∈ u−1V R. We must have U, V ⊆ R2 because UV = 0. Furthermore,
UV = 0 implies that

U ⊆ blR2 and V ⊆ bmR2 for some l,m ≥ 1 with l +m ≥ n.

Consider the shapes of α and β. Since α = (r1b
lg1 + · · · + rnb

lgk)u and
β = u−1(bmh1s1 + · · ·+ bmhpsp) with gj , hq ∈ K[b] and rj , sq ∈ R, we have

α = (r1g1+ · · ·+rngk)blu ∈ Rblu and β = u−1bm(h1s1+ · · ·+hpsp) ∈ u−1bmR.

Now say α = rblu and β = u−1bms with r, s ∈ R.
We will show αvβ = [rblu]v[u−1bms] = 0 for all v ∈ U(R). Then αU(R)β =

0 and hence R is unit-IFP. Here uvu−1 ∈ U(R), say w = uvu−1. By the
argument above, w = k1 + bg(b) + bpfbq with k1 ∈ K\{0}, g(b) ∈ K[b], and
f ∈ R, where p+ q ≥ n.

Note that

[rbl][k1 + bg(b)][bms] = [rbl][k1][bms] + [rbl][bg(b)][bms] = 0

because l +m ≥ n. Consequently we obtain

[rblu]v[u−1bms] = [rbl]w[bms] = [rbl][k1 + bg(b) + bpfbq][bms]

= [rbl][k1 + bg(b)][bms] + [rbl][bpfbq][bms]

= [rbl][bpfbq][bms] = rbl+pfbq+ms.

But l + m ≥ n and p + q ≥ n, so l + p ≥ n or q + m ≥ n. Thus
[rbl][bpfbq][bms] = 0, and so R is a unit-IFP ring. But R is not IFP since
bn = 0 and bn−1ab 6= 0.
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We show next that R is prime. Suppose that αRβ = 0 for α, β ∈ R.
Assume on the contrary that α and β are both nonzero. Note αβ = 0. So, by
the argument above, α = rblu and β = u−1bms for some nonzero r, s ∈ R.

By the argument above, u = k + g + bchbd with k ∈ K\{0}, g ∈ bK[b],
h ∈ R, and c + d ≥ n. We can obtain (g + bchbd)n = 0 by applying the proof
of [7, Theorem 1.3], hence

u−1 = k−1(1− [k−1(g + bchbd)] + · · ·+ (−1)n−1[k−1(g + bchbd)]n−1).

This yields

αaβ = (rblu)a(u−1bms)

= rbl[k + (g + bchbd)]a[k−1 − k−2(g + bchbd)

+ · · ·+ (−1)n−1k−(n−1)(g + bchbd)n−1]bms

= r[kbl + blg′(b)]a[k−1bm − k−2g′(b)bm

+ · · ·+ (−1)n−1k−(n−1)g′(b)n−1bm]s

= r[blabm + k−1blag′(b)bm − · · ·+ (−1)n−1k−(n−2)blag′(b)n−1bm

+ k−1blg′(b)abm − k−2blg′(b)ag′(b)bm

− · · ·+ (−1)n−1k−(n−1)blg′(b)ag′(b)n−1bm]s

= (rblabms) + r[k−1blag′(b)bm − · · ·+ (−1)n−1k−(n−2)blag′(b)n−1bm

+ k−1blg′(b)abm − k−2blg′(b)ag′(b)bm

− · · ·+ (−1)n−1k−(n−1)blg′(b)ag′(b)n−1bm]s,

where g′(b) = g + bchbd.
Next we observe the shapes of α and β more explicitly. Recall α = rblu and

β = u−1bms. Letting u = k + g + bpfbq and u−1 = k′ + g′ + bp
′
f ′bq

′
as above,

we obtain

α = (r1g1 + · · ·+ rngk)blu = tbl(k+ g+ bpfbq) = t(kbl + gbl + bl+pfbq) ∈ Rbn1

and

β = u−1bm(h1s1 + · · ·+ hpsp) = (k′ + g′ + bp
′
f ′bq

′
)bmt′

= (k′bm + bmg′ + bp
′
f ′bq

′+m)t′ ∈ bn2R,

where n1 = min{l, q}, n2 = min{m, p′}, t = r1g1 + · · · + rngk, and t′ =
h1s1 + · · ·+ hpsp.

Here assume rblabms = 0. Then rbla ∈ Rb by the preceding argument, a
contradiction because rbla 6= 0 and bms 6= 0. Thus rblabms 6= 0.

If u ∈ K, then αaβ = rblabms.
Suppose u /∈ K, i.e., g′(b) 6= 0. Then, letting w be the sum of terms of least

degree in rblabms, w cannot occur in αaβ−rblabms by the existence of nonzero
g′(b). Consequently αaβ 6= 0 by the existence of the nonzero w, contrary to
αaβ ∈ αRβ = 0.
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Thus α = 0 or β = 0, and therefore R is prime. �

Next we consider the structure of right or left regular elements in the ring
R above.

Remark. Every element in R can be expressed by

k + f + gb or k′ + f ′ + bg′ with f, f ′, g, g′ ∈ R,
where every term of f (resp., f ′) does not end (resp., start) by b when nonzero.

(1) Suppose that α is not right regular in R. Then α ∈ Rb by the argument
above. Hence, letting α = k+f+gb, we get k+f = 0. The converse is obvious.
Therefore k + f 6= 0 if and only if α is right regular.

(2) Suppose that β is not left regular in R. Then β ∈ bR by the argument
above. Hence, letting β = k′ + f ′ + bg′, we get k′ + f ′ = 0. The converse is
obvious. Therefore k′ + f ′ 6= 0 if and only if α is left regular.

(3) Every element in R can be also expressed by

k + f + f1b+ bf2 + g + bf3b with f, fi ∈ R and g ∈ bK[b],

where every term of f does not start and does not end by b, every term of f1
does not start by b, and every term of f2 does not end by b.

Suppose that γ = k + f + f1b + bf2 + g + bf3b is regular in R. Then
k + f + bf2 6= 0 by (1) since γ is right regular; and since γ is left regular, we
moreover get k + f 6= 0 by (2). Therefore γ is regular if and only if k + f 6= 0.

3. Another kind of unit-IFP ring

We follow the construction and refer to the argument in [4, Example 14].
Let F be a field and A = F 〈a, b, c〉 (resp., A1 = F 〈a, b〉) be the free algebra
generated by the noncommuting indeterminates a, b, c (resp., a, b) over F . Next
let B the subalgebra of A which consists of all polynomials with zero constant
terms in A, and B1 be the subalgebra of A1 which consists of all polynomials
with zero constant terms in A1. Then A = K+B and A1 = K+B1. Consider
the ideal I of A generated by

cc, ac, and crc with r ∈ B.
Set R = A/I, and identify a, b, c with their images in R for simplicity. Then
R is not an IFP ring because ac = 0 but abc 6= 0. We will show that R is a
unit-IFP ring.

Let C be the linear space, over F , of the monomials in B with exactly one
c. Then C2 = 0, B = C +B1 + I, A = K +C +B1 + I, and R = K +C +B1;
hence every element in R is expressed by

k + f1 + f2 with k ∈ K, f1 ∈ C, and f2 ∈ B1.

Let r = k+ f1 + f2 be a unit in R. Then rs = 1 for some s = k′ + g1 + g2 ∈ R
with k′ ∈ K, g1 ∈ C, and g2 ∈ B1. This yields

1 = kk′ + (k′f1 + kg1) + (k′f2 + kg2) + (f1g1 + f1g2 + f2g1) + f2g2
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= 1 + (k′f1 + kg1) + (k′f2 + kg2) + (f1g2 + f2g1) + f2g2,

noting kk′ = 1 and f1g1 ∈ I. This implies

(k′f1 + kg1) + (f1g2 + f2g1) + (k′f2 + kg2 + f2g2) = 0

with (k′f1 + kg1) + (f1g2 + f2g1) ∈ C and k′f2 + kg2 + f2g2 ∈ B1. So we have

(∗) k′f2 + kg2 + f2g2 = 0 and (k′f1 + kg1) + (f1g2 + f2g1) = 0.

From k′f2 + kg2 = −f2g2, we conclude k′f2 + kg2 = 0 and f2g2 = 0 by
considering the degrees of both sides. So f2 = 0 or g2 = 0.

Suppose f2 = 0. Then we get kg2 = 0 from k′f2 + kg2 = 0, and g2 = 0
follows because k 6= 0. Similarly g2 = 0 implies f2 = 0. Consequently we now
have

r = k + f1 and s = k′ + g1 with k′f1 + kg1 = 0,

noting f1g1 = 0. Therefore

U(R) = {k + f | 0 6= k ∈ K and f ∈ C}.
Next we observe the structure of zero-divisors in R. Let αβ = 0 for 0 6= α =

h + a1 + a2 and 0 6= β = h′ + b1 + b2 in R, where h, h′ ∈ K, a1, b1 ∈ C, and
a2, b2 ∈ B1. Then hh′ = 0, so h = 0 or h′ = 0.

Let h = 0, i.e., α = a1 + a2. Then

0 = (h′a1+a1b1+a1b2+a2b1)+(h′a2+a2b2) = (h′a1+a1b2+a2b1)+(h′a2+a2b2),

noting a1b1 = 0. So h′a1 + a1b2 + a2b1 = 0 and h′a2 + a2b2 = 0. As above,
h′a2 + a2b2 = 0 implies that a2 = 0 or b2 = 0.

Suppose a2 = 0. Then h′a1 + a1b2 + a2b1 = 0 implies h′a1 + a1b2 = 0.
Since b2 ∈ B1, we get h′a1 = 0 and a1b2 = 0. Here if h′ 6= 0, then a1 = 0
and so α = 0, contrary to α 6= 0. So h′ = 0 and β = b1 + b2. Consequently
0 = αβ = a1(b1 + b2) = a1b1 + a1b2 = a1b2. If b2 6= 0, then α = a1 = 0 since
b2 ∈ B1, contrary to α 6= 0. So b2 = 0 and β = b1.

Suppose b2 = 0. Then h′a2 + a2b2 = 0 implies h′a2 = 0. If a2 6= 0, then
h′ = 0, entailing α = a1 + a2 and β = b1. In this case, we have that a2 ∈ B1a
and b1 ∈ cB1 by help of the claim in [4, Example 14]. If a2 = 0, then a = a1,
and h′a1 + a1b2 + a2b1 = 0 implies h′a1 = 0. So h′ = 0 because a1 6= 0.
Consequently α = a1 and β = b1.

Therefore

“α ∈ C and β ∈ C” or “α ∈ C +B1a and β ∈ cB1”

when αβ = 0 for 0 6= α, β ∈ R.
Consider α ∈ N(R). Then we have

α ∈ C ∩ C = C or α ∈ (C +B1a) ∩ cB1 = cB1

by the preceding argument. So α ∈ C, and N(R) ⊆ C follows. But C2 = 0,
and C ⊆ N(R) follows. Thus C = N(R), and hence

U(R) = {k + f | 0 6= k ∈ K and f ∈ C} = {k + f | 0 6= k ∈ K and f ∈ N(R)}
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= (K\{0}) + C.

Suppose that αβ = 0 for α, β ∈ R. Then α, β ∈ C or α = a1 + a′2a, β = cb′2
with a1 ∈ C and a′2, b

′
2 ∈ B1. So

αU(R)β = α((K\{0}) + C)β = (K\{0})αβ + αCβ = αCβ = 0

because αCβ is either contained in CCC = 0 or (a1+a′2a)C(cb′2) = 0. Therefore
R is a unit-IFP ring.

Acknowledgments. The authors thank the referee for very careful reading
of the manuscript and many valuable suggestions that improved the paper
by much. This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government (MSIP; Ministry of
Science, ICT & Future Planning) (No. 2017R1C1B5017863).

References

[1] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8,
3128–3140.

[2] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math.

Soc. 2 (1970), 363–368.
[3] G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974),

1–32.
[4] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings,

Comm. Algebra 30 (2002), no. 2, 751–761.

[5] H. K. Kim, T. K. Kwak, Y. Lee, and Y. Seo, Insertion of units at zero products, J.
Algebra Appl. 16 (2018), 1850043, 20 pages.

[6] H. K. Kim, T. K. Kwak, Y. Lee, and Y. Seo, Corrigendum to “Insertion of units at zero

products [J. Algebra Appl. 16 (2018), no. 11, 1850043, 20 pages]”, J. Algebra Appl. 17
(2018), 1892002, 2 pages.

[7] Y. Lee, Structure of unit-IFP rings, submitted.

Sangwon Park

Department of Mathematics
Dong-A University

Busan 49315, Korea
Email address: swpark@donga.ac.kr

Sang Jo Yun

Department of Mathematics
Dong-A University

Busan 49315, Korea
Email address: sjyun@dau.ac.kr


