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HEIGHT INEQUALITY FOR RATIONAL MAPS AND

BOUNDS FOR PREPERIODIC POINTS

Chong Gyu Lee

Abstract. In this paper, we introduce the D-ratio of a rational map

f : Pn 99K Pn, defined over Q, whose indeterminacy locus is contained in
a hyperplane H on Pn. The D-ratio r(f ;V ) characterizes endomorphisms

and provides a useful height inequality on Pn(Q) \H. We also provide a
dynamical application: preperiodic points of dynamical systems of small

D-ratio are of bounded height.

1. Introduction

Let f : Pn 99K Pn be a rational map, defined over Q, and suppose its
indeterminacy locus I(f) is contained in a hyperplane H on Pn. The main
purpose of this paper is to provide a way to find a number r(f ;V ) which
explains the height change by f .

Theorem A (Theorem 5.1). Let f : Pn 99K Pn be a rational map defined over
Q such that indeterminacy only happens on a hyperplane H and let r(f ;V ) be
the D-ratio of f , associated with a resolution of indeterminacy V of f . Then
there is a constant C such that the following inequality holds;

r(f ;V )

deg f
· h
(
f(P )

)
+ C > h(P ) for all P ∈ Pn(Q) \H.

For an endomorphism, we have Northcott’s theorem [11]: let g : Pn(Q) →
Pn(Q) be an endomorphism and let h : Pn(Q) → R be the logarithmic abso-
lute height function. Then there are two nonnegative constants C1, C2, only
depending on g, such that

(1)
1

deg g
h
(
g(P )

)
+ C1 > h(P ) >

1

deg g
h
(
g(P )

)
− C2 for all P ∈ Pn(Q).
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It is one of the essential theorems in arithmetic dynamics. For example, the
Call-Silverman canonical height function [1] for endomorphisms on projective
spaces is well-defined because of Northcott’s theorem. Note that we can find
such C2 in (1) for any rational maps on projective spaces [4, Theorem B.2.5(a)].

Unfortunately, the first inequality of Northcott’s theorem only holds for
endomorphisms [9, Theorem A]; we can find C1 satisfying (1) on any dense
subset of the projective space if and only if f is an endomorphism. If f is
not an endomorphism but a rational map, we only expect weaker inequalities
[10,12,13]. In this article, we will introduce the D-ratio r(f ;V ) associated with
f and a resolution of indeterminacy V = (V, π) of f which provides Theorem A.

The main idea of the D-ratio is to generalize the case of endomorphisms.
The degree of an endomorphism g = [g0, . . . , gn] : Pn → Pn is the total degree of
homogeneous polynomials g0, . . . , gn. In the Picard group Pic(Pn), the degree
of g is the coefficient of H in g∗H. By the functorial property of the Weil height
machine [4, Theorem B.3.2], we can compare hH(P ) and hH

(
g(P )

)
using the

degree of φ.

hH
(
g(P )

)
= hg∗H(P ) +O(1) = deg g · hH(P ) +O(1),

where hH is the Weil height function associated with H (the logarithmic height
function h(P ) and the Weil height function hH are equivalent so that we may
assume that they are the same function). It guarantees that the height function(

1

deg g
hg∗H − hH

)
(P ) :=

1

deg g
hH
(
g(P )

)
− hH(P )

is bounded on Pn(Q).
Let f : Pn 99K Pn be a rational map. Then the above height function is

not bounded below any more. To get a tool to examine the dynamical system
defined by f , we want to find a constant δ > 1 to build the height function

δ · 1

deg f
hH
(
f(P )

)
− hH(P )

which is bounded below on a dense subset of Pn(Q). Due to the failure of
the functoriality of the Weil height machine for rational maps, we pass to a
resolution of indeterminacy to work with morphisms: Hironaka [5] shows that
there exists a nonsingular projective variety V with a composition of monoidal
transformations π = ρr ◦ · · · ◦ ρ1 : V → Pn such that φ = f ◦ π extends to a
morphism (in the case of endomorphisms, we may think π to be the identity
map on Pn).

V

π

��

φ

!!
Pn

f
// Pn

Pn

id
��

g

!!
Pn

g
// Pn
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As we treat hH(P ) = hH
(
id(P )

)
and hH

(
g(P )

)
in the endomorphism case, we

will compare

hH
(
φ(Q)

)
= hφ∗H(Q) +O(1) and hH

(
π(Q)

)
= hπ∗H(Q) +O(1).

Note that if π(Q) = P and f is defined at P , then φ(Q) = f(P ) so the
comparison of these height functions provides the desired height relation [7].

To facilitate this comparison, we first define the An-effectiveness, a new
notion of effectivity for divisors on resolutions of indeterminacy of rational
maps. The An-effective divisors have better properties than effective divisors
when we have a basis of the Picard group involving H and the exceptional
divisors.

With the An-effective divisors, we define the D-ratio r(f ;V ) to be the num-
ber satisfying

r(f ;V ) = inf

{
δ

∣∣∣∣ δ

deg f
· φ∗H − π∗H is An-effective

}
to provide Theorem A. Note that the D-ratio depends on the choice of a res-
olution of indeterminacy. However, we will show that it depends only on the
“strong factorization class” of the resolution of indeterminacy. In particular,
the D-ratio depends only on f in dimension 2 where the strong factorization
always holds (Corollary 4.5).

The D-ratio is defined to satisfy some height inequalities, which are enough
for dynamical implications. Theorem A only works on An = Pn \H so that we
need a self map defined on An to make a dynamical system, forcing f to be
polynomial maps. Theorem B shows that a polynomial map f has a dynamical
property similar to an endomorphism if f has a small D-ratio.

Theorem B (Theorem 5.3). Let f : An → An be a polynomial map defined
over Q such that r(f ;V ) < deg f for a resolution of indeterminacy V of f .
Then the set of preperiodic points of f is of bounded height.

Note that the condition r(f ;V ) < deg f is sharp: there is a polynomial map
such that r(f ;V ) = deg f and PreperAn(f) is not of bounded height (Exam-
ple 3). Still, we can find some dynamical information for such a rational map
under the existence of a good counterpart, like the case of regular automor-
phisms. We refer [6, 8] to the reader for such cases.

We know that the height functions cannot be defined on entire C. However,
theorems are still valid for polynomial maps defined over C since preperiodic
points are algebraic over the field generated by coefficients and we have arith-
metic height defined on the algebraic closure of a finitely generated field over
Q.

Acknowledgements. I would like to thank my advisor Joseph H. Silver-
man for his overall advice. Also, thanks to Dan Abramovich for his helpful
comments, especially for Section 2, and thanks to Laura DeMarco for useful
discussions. Also, thanks to the referee for his/her exceptional care for this
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paper. Finally, I am grateful for the hospitality of the Korea Institute for
Advanced Study.

2. Preliminaries: resolution of indeterminacy

In this section, we see the basic theory of the resolution of indeterminacy,
which will be used in later sections. For details, I refer [2, 3] to the reader for
basic terminology and properties. We will let H be a fixed hyperplane of Pn, let
An = Pn \H. For convenience, without loss of generality, we use the projective
coordinate P = [x0 : · · · : xn] ∈ Pn(Q) and assume H = {P ∈ Pn(Q) | x0 = 0}.
Let

Ratn(H) := {f : Pn 99K Pn | I(f) ⊂ H}
and let f be an element of Ratn(H) defined over Q unless stated otherwise.
Also, we will consider the resolution of indeterminacy in Hironaka’s paper [5].
All varieties are assumed to be irreducible unless stated otherwise.

Main idea of the resolution of indeterminacy is to blowup X several times
until all possible limits of function values exist. We clarify the definition of
blowups, in terms of the corresponding birational maps.

Definition 2.1. Let π : X̃ → X be a birational morphism. We say that π is a
monoidal transformation if there is a smooth irreducible subvariety C of X, of
codimension at least 2, such that π−1(C) is a smooth irreducible hypersurface

in X̃ and π is an isomorphism outside π−1(C). In such case, we say X̃ is a
blowup of X along the center C.

If the birational map π : X̃ → X is a composition of monoidal transforma-

tions, we say that X̃ is a successive blowup of X. We say C is the center of X̃
if C is the image of every center in each step, on X.

Theorem 2.2 (Hironaka). Let f : X 99K Y be a rational map between proper
varieties such that X is nonsingular. Then there is a finite sequence of proper
varieties X0, . . . , Xr such that

(a) X0 = X.
(b) ρi : Xi → Xi−1 is a monoidal transformation.
(c) If Ti is the center of the blowup ρi : Xi → Xi−1, then ρ1◦· · ·◦ρi−1(Ti) ⊂

I(f) on X.

(d) The rational map f : X 99K Y lifts to a morphism f̃ : Xr → Y .
(e) Consider the composition of all monoidal transformations ρ = ρ1 ◦ · · · ◦

ρr : Xr → X. Then I(f) is precisely the set over which ρ fails to be
injective.

Proof. See [5, Question (E) and Main Theorem II]. �

For notational convenience, we will define the following:

Definition 2.3. Let f : Pn 99K Pn be a rational map. We say that a pair
(V, π) is a resolution of indeterminacy of f when V is a successive blowup of
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Pn with a birational morphism π : V → Pn such that f ◦ π : V → Pn extends
to a morphism. We call this morphism φ := f ◦ π the resolved morphism of f .

In Section 3, we find a basis of Pic(V ) when (V, π) is a resolution of indeter-
minacy of a rational map f . In particular, we will use a special basis consisting
of irreducible divisors. However, pullbacks of irreducible divisors may not be
irreducible because of the exceptional part. So we find a basis of Pic(V ) using a
proper transformation of a divisor D, which is the closure of the inverse image
of D \ C where C is the center of V .

Proposition 2.4. Let V be a successive blowup of Pn with a birational mor-
phism π : V → Pn: there are monoidal transformations ρi : Vi → Vi−1 such
that Vr = V and V0 = Pn. Let Fi be the exceptional divisor of the blowup
ρi : Vi → Vi−1, let σi = ρi+1 ◦ · · · ◦ ρr and let Ei be the proper transformation

σ#
i Fi of Fi by σi. Then Pic(V ) is a free Z-module of rank (r + 1) with a basis

B = {HV = π#H,E1, . . . , Er}.

Proof. [3, Exer.II.7.9] shows that Pic(Vi+1) ' Pic(Vi) ⊕ Z if ρi : Vi+1 → Vi is
a monoidal transformation. More precisely, Pic(Vi+1) = {ρ#D + nEi+1 | D ∈
Pic(Vi)} where Ei+1 is the exceptional divisor of ρi on Vi+1. �

Lemma 2.5. Let π : V → Pn and ρ : W → V be compositions of monoidal
transformations such that the centers of V and W , successive blowups of Pn,
are subsets of H, let {HV , E1, . . . , Er} and {HW , F1, . . . , Fs} be the bases of
Pic(V ) and Pic(W ) constructed from π and π ◦ ρ respectively, described in
Proposition 2.4 and let

ρ∗HV = ρ#HV +

s∑
j=1

m0jFj and ρ∗Ei = ρ#Ei +

s∑
j=1

mijFj .

Then mij ≥ 0 for all i, j. Furthermore,
∑r
i=0mij > 0 for all j = 1, . . . , s.

Proof. Fix j ∈ {1, . . . , s}. If ρ(Fj) ⊂ Ei, then mij > 0. Otherwise, mij = 0.
Furthermore, because of the assumption, ρ(Fj) is over which π fails to be
injective on V , it should be contained in one of HV , E1, . . . , Er. Note that mij

are integers since we only blowup along smooth irreducible subvarieties. �

3. An-effective divisors

Recall that H is a fixed hyperplane of Pn with a uniformizer x0, An = Pn\H
and f is an element of Ratn(H) defined over Q. The purpose of introducing
the An-effective divisor is to examine the corresponding Weil height function
which is desired to be bounded below on An. Since two Weil height functions
are equivalent if associated divisors are linearly equivalent, we consider that the
equality D1 = D2 in this paper means the linear equivalence for convenience
though we call them divisors. Also, we use PicR(V ) = Pic(V ) ⊗ R instead of
Pic(V ) to describe the An-effective cone and r(f ;V ), which does not affect on
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applications of the Weil height machine. It follows that an effective divisor is
considered to be a linear equivalent class in the effective cone of PicR(V ).

The precise definition of the D-ratio will be given in Section 4, but roughly
the D-ratio is be the number having a following geometric meaning;

r(f ;V ) := inf

{
δ

∣∣∣∣ δ

deg f
· φ∗H − π∗H is An-effective in PicR(V )

}
,

where V = (V, π) is a resolution of indeterminacy of f , φ = f ◦π is the resolved
morphism. We may use ‘effective’ instead of the new term ‘An-effective’, but
it is not easy to describe the effective cone of V even though PicR(V ) is a
finite dimensional R-vector space. Moreover, we cannot control the base loci
of all effective divisors. So we will take the An-effective cone AE(V ) such that
1) AE(V ) is a simple closed subset of the effective cone and 2) every element
of AE(V ) has the base locus outside An.

Definition 3.1. Let V be a successive blowup of Pn with a birational morphism
π : V → Pn such that the center of the successive blowup V lies in H and let

PicR(V ) = RHV ⊕ RE1 ⊕ · · · ⊕ REr

with the basis B = {HV , E1, . . . , Er} described in Proposition 2.4. We say
that a divisor D on V is An-effective if it is linearly equivalent to a nonnegative
linear combination of HV , E1, . . . , Er. Moreover, we write D1 � D2 if D1−D2

is An-effective. We define the An-effective cone of V to be

AE(V ) := {D | D is an An-effective divisor}.

Recall Proposition 2.4 provides a certain basis B of PicR(V ). It implies
that the representation of an element in PicR(V ) is unique and hence the An-
effectiveness is well-defined. The next proposition shows some useful properties
of An-effective divisors which will be important to define the D-ratio of a
rational map in the next section.

Proposition 3.2. Let V be a successive blowup of Pn with a birational mor-
phism π : V → Pn, let B be the basis defined on Proposition 2.4 and let
D,D1, D2, D3 ∈ PicR(V ).

(a) (Effectiveness) If D is An-effective, then D is effective.
(b) (Boundedness) If D is An-effective, then the Weil height function hD

associated with D is bounded below on the set π−1
(
An
)
:

π−1
(
An
)

:= V \

(
HV ∪

(
r⋃
i=1

Ei

))
.

(c) (Transitivity) If D1 � D2 and D2 � D3 , then D1 � D3.
(d) (Functoriality) If ρ : W → V is a monoidal transformation and D1 �

D2, then ρ∗D1 � ρ∗D2.
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Proof. (a) It is obvious since an An-effective divisor is a nonnegative linear
combination of effective divisors on V .

(b) Since D is An-effective, it is effective. By the positivity of the Weil
height machine [4, Theorem B.3.2(e)], we get that hD(P ) > O(1) for all
P ∈ V \ |D| where |D| is the base locus of D. By the definition of the An-
effectiveness, D = p0HV +

∑r
i=1 piEi for some nonnegative integers pi’s and

hence |D| ⊂ HV ∪ (
⋃r
i=1Ei ) = π−1

(
H
)
.

(c) If D1 � D2 and D2 � D3, then D1−D2 and D2−D3 are in AE(V ). Since
AE(V ) is closed under addition by definition, D1−D3 = (D1−D2)+(D2−D3) ∈
AE(V ).

(d) Let PicR(V ) = RHV ⊕ RE1 ⊕ · · · ⊕ REr, and let W be a blowup of V
with a monoidal transformation ρ : W → V . Then Pic(W ) is still an R-vector
space:

PicR(W ) = RH#
V ⊕ RE#

1 ⊕ · · · ⊕ RE#
r ⊕ RF,

where H#
V = ρ#HV , E#

i = ρ#Ei and F is the exceptional divisor of W over

V . Moreover, ρ∗HV = H#
V +m0F and ρ∗Ei = E#

i +miF for some mi, which
are nonnegative integers by Lemma 2.5.

Therefore, for any An-effective divisor D = p0HV +
∑r
i=1 piEi ∈ PicR(V ),

ρ∗D = p0(ρ∗HV ) +

r∑
i=1

pi(ρ
∗Ei) = p0H

#
V +

r∑
i=1

piE
#
i +

(
r∑
i=0

pimi

)
F

is An-effective on W because pi’s and mi’s are nonnegative integers. �

4. Maximal ratio of coefficient of divisors

In this section, we introduce the main idea of this paper - the D-ratio. In this
section, we still fix the basis of the Picard group described in Proposition 2.4.

Definition 4.1. Let f ∈ Ratn(H), let V = (V, π) be a resolution of indeter-
minacy of f and let φ be the resolved morphism of f on V :

V

π

��

φ

!!
Pn

f
// Pn.

Suppose that

π∗H = a0HV +

r∑
i=1

aiEi and φ∗H = b0HV +

r∑
i=1

biEi.

If bi are nonzero for all i satisfying ai 6= 0, we define the D-ratio to be

r(f ;V ) := deg f · max
i=0,...,r

(
ai
bi

)
.
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If there is an i satisfying ai 6= 0 and bi = 0, we define

r(f ;V ) :=∞.

Remark 1. We have some remarks for the definition of the D-ratio.

(a) We may define the D-ratio without degree. However, the author prefers
the original one because of two reasons. 1) It shows how much f fails
to be an endomorphism. f is an endomorphism if and only if r(f ;V ) =
1. And PreperAn(f) is of bounded height if r(f ;V ) < deg f . 2) We
have better result for regular polynomial automorphisms in the original
definition [8, Theorem 7.1(2)]: r(f ;V ) = r(f−1;V ) = deg f · deg f−1.

(b) If we have a blowup along C which lies outside H, then we have an
exceptional divisor that has trivial contribution to π∗H and φ∗H.

(c) Let f ∈ Ratn(H) and let V = (V, π) be a resolution of indeterminacy
of f . Then

r(f ;V ) := min

{
δ

∣∣∣∣ δ

deg f
· (f ◦ π)∗H − π∗H � 0

}
.

Note that AE(V ) is closed by definition so that we can use the mini-
mum.

In fact, the D-ratio r(f, V ) does not depend on the choice of V , but only on
the strong factorization class of V . It is mainly because Remark 1 guarantees
that we have the basis of PicR(V ) consisting of the proper transformation of
H and all irreducible components of the exceptional divisor of π.

Definition 4.2. Let ρ : X1 99K X2 be an equivariant birational map. We say

ρ has a strong factorization if there are birational endomorphisms πi : X̃ → Xi

which are compositions of monoidal transformations such that the following
diagram commute:

X̃

π2

  

π1

~~
X1 ρ

// X2.

Example 1. Any birational maps between smooth complete surfaces has a
strong factorization [14, Chapter IV].

Lemma 4.3. Let V = (V, πV ) and W = (W,πW ) be resolutions of indetermi-
nacy of f with resolved morphisms φV = f ◦πV and φW = f ◦πW , respectively.
Suppose that τ = π−1V ◦ πW : W 99K V has a strong factorization: there is a
common successive blowup U of V and W where τV : U → V and τW : U →W
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are compositions of monoidal transformations.

U

φU

��

τV

!!

τW

}}
W

πW

��

φW

!!

V

πV

��

φV

}}
Pn

f
// Pn Pn.

f
oo

Then r(f ;V ) = r(f ;W ).

Proof. Suppose

π∗VH = a0HV +

r∑
i=1

aiEi and φ∗VH = b0HV +

r∑
i=1

biEi.

First, consider the case that W is a successive blowup of V . Suppose that
ρ : W → V is a composition of monoidal transformations:

Pn

f

��

V
πVoo

φV

}}

W
ρoo

φWvv
Pn.

Since PicR(V ) = RHV ⊕ RE1 ⊕ · · · ⊕ REr, we get

PicR(W ) = RH#
V ⊕ RE#

1 ⊕ · · · ⊕ RE#
r ⊕ RF1 ⊕ · · · ⊕ RFs,

where H#
V = ρ#HV , E#

i = ρ#Ei and Fj are the exceptional divisors of
monoidal transformations in ρ. Moreover, we may assume that

ρ∗HV = H#
V +

s∑
j=1

m0jFj and ρ∗Ei = E#
i +

s∑
j=1

mijFj

for some integers mij which are nonnegative by Lemma 2.5. By assumption,
φW = φV ◦ ρ and hence

π∗WH = ρ∗π∗H = ρ∗

(
a0HV +

r∑
i=1

aiEi

)

= a0H
#
V +

r∑
i=1

aiE
#
i +

s∑
j=1

(
r∑
i=0

aimij

)
Fj

and

φ∗WH = ρ∗φ∗VH = ρ∗

(
b0HV +

r∑
i=1

biEi

)
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= b0H
#
V +

r∑
i=1

biE
#
i +

s∑
j=1

(
r∑
i=0

bimij

)
Fj .

Note that we assume ai > 0 (Remark 1(b)). If bi = 0 for some i, then
r(f, V ) = r(f,W ) = ∞ by the definition of the D-ratio. So we may assume
bi > 0 for all i. Then also by the definition of the D-ratio, we obtain the
following inequality:

(2) r(f ;V ) = deg f ·max
i

(
ai
bi

)
≥ deg f · ai

bi
for all i.

Because of Lemma 2.5 and the fact bi > 0, we have
r∑
i=0

bimij ≥ min
0≤i≤r

bi ·
r∑
i=0

mij > 0 for all j

and hence all coefficients of φ∗WH are positive. Thus, we get

r(f ;W ) = deg f ·max

(
max
i

(
ai
bi

)
,max

j

(∑r
i=0 aimij∑r
i=0 bimij

))
.

Moreover, due to (2), we get the following which provides the desired result:

max
j

(∑r
i=0 aimij∑r
i=0 bimij

)
≤ max

j

∑r
i=0

r(f,V )
deg f bimij∑r

i=0 bimij

 =
r(f ;V )

deg f
= max

i

(
ai
bi

)
.

Now let V = (V, πV ) and W = (W,πW ) be resolutions of indeterminacy of
f allowing strong factorization: there is a common blowup U of V and W such
that τV : U → V and τW : U → W are compositions of monoidal transforma-
tions. Then U = (U, πU := πV ◦ τV ) is still a resolution of indeterminacy of f .
Then the previous argument implies

r(f ;V ) = r(f ;U) = r(f ;W ). �

If we can connect two resolutions of indeterminacy with a sequence of strong
factorizations, then they will give the same D-ratios. We define such case as
follows:

Definition 4.4. Let V = (V, πV ) and W = (W,πW ) be resolutions of indeter-
minacy of a rational map f ∈ Ratn(H). We say V and W are in the same strong
factorization class if there is a sequence V = V 0, V 1 = (V1, π1), . . . , V k = W of
resolutions of indeterminacy of f such that π−1i ◦πi+1 has a strong factorization
for all i.

Corollary 4.5. Let V = (V, πV ) and W = (W,πW ) be resolutions of indeter-
minacy of a rational map f : Pn(Q) 99K Pn(Q), in the same strong factorization
class. Then r(f ;V ) = r(f ;W ). In particular, if n = 2, then π−1V ◦ πW is a
birational map between smooth surfaces and hence it has a strong factorization
so that V = (V, πV ) and W = (W,πW ) are in the same strong factorization
class and hence r(f ;V ) = r(f ;W ).
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We will find some information of f by observing r(f ;V ). For convenience,
we will say f is a polynomial map with respect to H if f(An) ⊂ An. If f is
a polynomial map with respect to H, then we evaluate x0 = 1 to get f =
(f1, . . . , fn), where fi ∈ Q[x1, . . . , xn].

Proposition 4.6. Let f, g ∈ Ratn(H) be rational maps defined over Q. Then

(a) r(f ;V ) = 1 if f is an endomorphism on Pn.
(b) If g is an endomorphism, then r(g ◦ f ;V ) = r(f ;V ) for any resolution

of indeterminacy V of f .
(c) Let f be a polynomial map with respect to H and let φ∗H = b0H

# +∑
biEi. Then b0 = deg f .

(d) If f is a polynomial map with respect to H, then r(f ;V ) ≥ 1.

Remark 2. In fact, (a) and (d) will be strengthened in Corollary 5.2: r(f ;V ) =
1 if and only if f is an endomorphism, and r(f ;V ) ≥ 1 for any f ∈ Ratn(H).

Proof of Proposition 4.6. (a) When f is an endomorphism, then (Pn, id) is a
resolution of indeterminacy of f . Thus,

id∗H = H and f∗H = deg f ·H

and hence

r
(
f ; (Pn, id)

)
= deg f · 1

deg f
= 1.

If V = (V, π) is an arbitrary resolution of indeterminacy of f , then V is a
successive blowup of Pn so that

r
(
f ; (Pn, id)

)
= r(f ;V )

because of Lemma 4.3. We will show that the equality only holds if f is an
endomorphism in Corollary 5.2.

(b) Let (V, π) be a resolution of indeterminacy of f and suppose that

π∗H = a0HV +

r∑
i=0

aiEi and φ∗H = b0HV +

r∑
i=0

biEi.

We consider the following diagram:

V

π

��

φ

!!
Pn

f
// Pn

g // Pn.

We easily get φ∗g∗H = deg g ·

(
b0HV +

r∑
i=1

biEi

)
and hence

r(g ◦ f ;V )

deg(g ◦ f)
= max

i

(
ai

deg g · bi

)
=

1

deg g
·max

i

(
ai
bi

)
=

r(f ;V )

deg f deg g
.
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Furthermore, deg(g ◦ f) = deg f ·deg g since g is an endomorphism. Therefore,
we have the desired result.

(c) We may assume x0 is a uniformizer at H, which generates the ideal of
regular functions which becomes 0 on H. Then we have the following equality;

φ∗H = ordHV
(x0 ◦ φ) ·HV +

r∑
i=1

ordEi
(x0 ◦ φ) · Ei.

Since f is a polynomial map, without loss of generality, we can sayH = (x0 = 0)
and f(x0, . . . , xn) = [xd0, . . . , fn(x0, . . . , xn)]. Moreover, since φ = f ◦ π on
|HV | \ ∪ri=1|Ei| and dim (|HV | ∩ ∪ri=1|Ei|) ≤ n− 2 < n− 1 = dimHV , we can
claim that ordHV

(x0◦φ) = ordHV
(x0◦f). Thus, we obtain b0 = ordHV

(x0◦f) =
ordH(xd0) = d.

(d) Let V = (V, π) be a resolution of indeterminacy of f with the resolved
morphism φ = f ◦ π. We may assume that the underlying set of the center of
blowup is I(f) by Theorem 2.2. Suppose that

π∗H = a0HV +

r∑
i=1

aiEi and φ∗H = b0HV +

r∑
i=1

biEi.

We can easily check that a0 = 1: because π(Ei) ⊂ I(f) and I(f) is a closed
set of codimension at least 2, we have π∗Ei = 0. Thus,

π∗π
∗H = πV ∗

(
a0HV +

r∑
i=1

aiEi

)
= π∗a0HV = a0H.

On the other hand, choose another hyperplane H ′ which satisfies I(f) 6⊂ H ′.
Since π is one-to-one outside of π−1 (I(f)), we get

π∗π
∗H = π∗π

∗H ′ = H ′ = H.

Therefore, π∗HV = H and a0 = 1. Combine it with (c) to get

r(f ;V ) = deg f ·max
i

(
ai
bi

)
≥ deg f · a0

b0
= deg f · 1

deg f
= 1.

�

5. Upper bounds of height for rational maps

In Introduction, we say that Northcott’s Theorem does not work for rational
maps and hence we need other tool to examine arithmetic relation between P
and f(P ). In this section, we prove Theorem A, which is a tool to examine
dynamical properties of f ∈ Ratn(H).

Theorem 5.1. Let f : Pn 99K Pn be a rational map defined over Q such that
indeterminacy only happens on a hyperplane H and let r(f ;V ) be the D-ratio
of f , associated with a resolution of indeterminacy V of f . Then there is a
constant C such that the following inequality holds.

r(f ;V )

deg f
· h
(
f(P )

)
+ C > h(P ) for all P ∈ Pn(Q) \H.
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Proof. Let (V, π) be a resolution of indeterminacy of f with the resolved mor-
phism φ = f ◦ πV and r(f ;V ) be the D-ratio of f associated with V . Suppose
that

π∗H = a0HV +

r∑
i=1

aiEi and φ∗H = b0HV +

r∑
i=1

biEi,

where B = {HV , E1, . . . , Er} is the basis described in Proposition 2.4.

Let D := r(f ;V )
deg f φ

∗H − π∗H. By the definition of the D-ratio, D is An-

effective. So the height function associated with D,

hD =
r(f ;V )

deg f
hφ∗H − hπ∗H

is bounded below on π−1
(
An
)

by Proposition 3.2(b). Hence we have the fol-
lowing inequality:

r(f ;V )

deg f
h
(
φ(Q)

)
+ C > h

(
π(Q)

)
for all Q ∈ π−1

(
An
)
.

Therefore, for P ∈ An(Q), taking Q = π−1(P ), we get the desired result. �

As an easy consequence of Theorem 5.1, we can strengthen Proposition 4.6
(a), (d) for any rational map f ∈ Ratn(H).

Corollary 5.2. Let f ∈ Ratn(H) be a rational map defined over Q. Then
r(f ;V ) ≥ 1. Moreover, r(f ;V ) = 1 if only if f is an endomorphism on Pn.

Proof. By Theorem 5.1, we have

r(f ;V )

deg f
h
(
f(P )

)
+ C > h(P )

on An(Q). In addition, we have

h(P ) >
1

deg f
h
(
f(P )

)
− C ′

on Pn \ I(f) by the triangle inequality. (For details, see [4, Theorem B.2.5].)
Therefore, we have r(f ;V ) ≥ 1 for any rational map f ∈ Ratn(H) and for any
resolution of indeterminacy V of f .

Moreover, by Proposition 4.6(a) and by Theorem 5.1, r(f ;V ) = 1 only if f
is an endomorphism. �

We apply Theorem 5.1 to study dynamical properties of a polynomial map.
We can view a polynomial map f : An → An as an element f ∈ Ratn(H) such
that f(An) ⊂ An. Thus, we can find r(f ;V ) and apply Theorem 5.1 at all
forward images fm(P ) ∈ An of P . In fact, the inequality in Theorem 5.1 is
only valid on An(Q), forcing f to be a polynomial for dynamical application.
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Theorem 5.3. Let f : An → An be a polynomial map, defined over Q, such
that r(f ;V ) < deg f . Then

PreperAn(f) =
{
P ∈ An(Q) | f l(P ) = fm(P ) for some l 6= m

}
is a set of bounded height.

Proof. Let u = r(f ;V )
deg f < 1. By Theorem 5.1, we have

(5) u · h
(
f(P )

)
> h(P )− C for all P ∈ An(Q).

Then the iteration of (5) provides

ul · h
(
f l(P )

)
> ul−1

[
h
(
f l−1(P )

)
− C

]
· · · > h(P )−

{
1 + u+ · · ·+ ul−1

}
C.

Hence, we have

ul · h
(
f l(P )

)
> h(P )− C

1− u
for all l > 0. Moreover, if P is a preperiodic point of f , then h

(
f l(P )

)
is

bounded and hence lim
l→∞

ul · h
(
f l(P )

)
= 0. So we get

C

1− u
≥ h(P ) for all P ∈ PreperAn(f). �

Example 2. Let
f(x, y) = (x3 + y, x+ y2).

Consider f as rational map on P2 by homogenization:

f(X,Y, Z) = [X3 + Y Z2, XZ2 + Y 2Z,Z3].

Then after three blowing-ups, we get a resolution of indeterminacy of f :

f1(x, z)[x1, z1] = [x1x
2 + z1z, z1xz + z1, z1z

2]

f2(x, z1)[x2, z2] = [x2x+ x2z
2
1 , x2z

2
1x+ z2, x2z

3
1x] and

f3(x, z2)[x3, z3] = [x3 + z3z2x
2, x3z

2
3x

2 + z3, x3z
3
2x

3].

Note that we choose appropriate affine pieces for each step to make it simple.
Now we can calculate two pullbacks

π∗H = HV + E1 + 2E2 + 3E3, φ∗H = 3HV + 2E1 + 4E2 + 6E3

and the D-ratio r(f ;V ) = 3/2 < 3. Therefore, the preperiodic points of f on
An(Q) are of bounded height.

Example 3. The condition r(f ;V ) < deg f in Theorem 5.3 is sharp: let

f(x, y) = (x, y2).

Then after two blowing-ups along points, we get a resolution of indeterminacy
of f . And we have

π∗H = HV + E1 + 2E2, φ∗H = 2HV + E1 + 2E2.

Thus, r(f) = 2 = deg f . And it has infinitely many integral fixed points (n, 0).
Thus, PreperAn(f) is not bounded.
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Example 4. Let
f(x, y) = (y, x2 + y).

Then after two blowing-ups, the indeterminacy of f is resolved. And, we have

π∗H = HV + E1 + 2E2 and φ∗H = 2Hv + E1 + 2E2

so that r(f) = 2 = deg f . But we can check that f2(x, y) = (x2 +y, x2 +y2 +y)
extends to a morphism. Thus, r(f2) = 1 < 2 = deg f2. Therefore, preperiodic
points of f on An(Q) are of bounded height.

Corollary 5.4. Let f : An → An be a polynomial map, defined over Q. If
there is some number N satisfying r(fN ;V ) < deg(fN ), then PreperAn(f) is a
set of bounded height.

Proof. It is clear since PreperAn(f) = PreperAn(fN ). �

Example 5. Consider the Nagata map

f(x, y, z) = (x+ (x2 − yz)z, y + 2(x2 − yz)x+ (x2 − yz)2z, z),
which is a polynomial map on P3. It has infinitely many rational fixed points:
any point on the quadratic curve x2 = yz is a fixed point of f . So PreperAn(f) is
not of bounded height. Furthermore, theN -th iteration of f is still a polynomial
map of degree 5;

fN (x, y, z) = (x+N(x2 − yz)z, y + 2N(x2 − yz)x+N2(x2 − yz)2z, z).
So it follows from Corollary 5.4 that r(fN , V N ) ≥ deg fN = 5 for any resolution
of indeterminacy V N of fN .
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