DOI QR코드

DOI QR Code

Analysis of virulence gene profiles of Salmonella spp. and Enterococcus faecalis isolated from the freshly slaughtered poultry meats produced in Gyeong-Nam province

경남지역 가금류 도축장 신선육에서 분리한 Salmonella spp.와 Enterococcus faecalis의 독성인자 보유 패턴 분석

  • 하도윤 (경상남도 동물위생시험소) ;
  • 차휘근 (경상남도 동물위생시험소) ;
  • 한권식 (경상남도 동물위생시험소) ;
  • 장은희 (경상남도 동물위생시험소) ;
  • 박하영 (경상남도 동물위생시험소) ;
  • 배민진 (경상남도 동물위생시험소) ;
  • 조아름송이 (경상남도 동물위생시험소) ;
  • 이후근 (경상남도 동물위생시험소) ;
  • 고병효 (경상남도 동물위생시험소) ;
  • 김도경 (경상남도 동물위생시험소) ;
  • 황보원 (경상남도 동물위생시험소) ;
  • 김상현 (경상대학교 수의과대학 수의미생물학연구실)
  • Received : 2018.05.08
  • Accepted : 2018.09.19
  • Published : 2018.09.30

Abstract

In order for monitoring of pathogenic bacterial contamination in the freshly slaughtered poultry meats produced in Gyeong-Nam province, we first isolated 4 strains of Salmonella spp. and 32 strains of Enterococcus faecalis from the total 164 samples, then we analyzed potential virulence gene profiles of the bacterial isolates by PCR using species-specific primer. The potential virulence genes we selected in this study were stn, invA, fimA, spvR, and spvC for the isolates of Salmonella spp. and those of esp, cylM, cylA, cylB, gelE, fsrA, fsrB, and fsrC were for the isolates of E. faecalis. The PCR results showed that all 5 virulence genes were detected simultaneously in the all isolates of Salmonella spp. However, there was a diverse occurrence pattern of the virulence genes in the case of E. faecalis. The gene for enterococcal surface protein (esp) was not detected among the isolates (0/32), and the haemolysin gene prevalence rate of cylA, cylB, and cylM were 3.1% (1/32), 9.3% (3/32), and 9.3% (3/32), respectively. Moreover, the genes of gelE, fsrA, fsrB, and fsrC that associated with gelatinase activity were detected in the rate of 53.1% (17/32), 53.1% (17/32), 53.1% (17/32), and 53.1% (17/32), respectively. In conclusion, in the isolates of Salmonella spp., all possessed 5 virulence genes tested, suggesting that they are all related with each other clonally. However, in the case of E. faecalis isolates, the occurrence of the haemolysin genes (cylM, cylA, cylB) and the gelatinase genes (gelE, fsrABC) was highly variable among the isolates.

Keywords

References

  1. Adrianus WM, Velden VD, Baumler AJ, Tsolis RM, Feffron F. 1998. Multiple Fimbrial Adhesins are required for full virulence of Salmonella typhimurium in Mice. Infect Immun 66: 2803-2808.
  2. Alphons JAMV, Jaap EVD. 2005. Distribution of "classic" viru- lence factors among Salmonella spp. FEMS Immunol Med Microbiol 44: 251-259. https://doi.org/10.1016/j.femsim.2005.02.002
  3. Araque M. 2009. Nontyphoid Salmonella gastroenteritis in pediatric patients from urban areas in the city of Mérida, Venezuela. J Infect Developing Countries 3(1): 28-34.
  4. Betancor L, Pereira M, Martinez A, Giossa G, Fookes M, Flores K, Barrios P, Repiso V, Vignoli R, Cordeiro N, Algorta G, Thomson N, Maskell D. 2010. Prevalence of Salmonella enterica in poultry and eggs in Uruguay during an epidemic due to Salmonella enerica serovar Enteritidis. J Clin Microbiol 48(7): 2413-2423. https://doi.org/10.1128/JCM.02137-09
  5. Chaudhary JH, Nayak JB, Brahmbhatt MN, Makwana PP. 2015. Virulence genes detection of Salmonella serovars isolated from pork and slaughterhouse environment in Ahmedabad, Gujarat. Veterinary World 8: 121-14. https://doi.org/10.14202/vetworld.2015.121-124
  6. Chopra AK, Huang JH, Xu X, Burden K, Niesel DW, Rosenbaum MW, Popo VL, Peterson JW. 1999. Role of Salmonella enterotoxin in overall virulence of the organism. Microb Pathog 27(3): 155-171. https://doi.org/10.1006/mpat.1999.0294
  7. Clegg S, Pruckler J, Purcell BK. 1985. Complementation analysis of recombinant plasmids encoding type 1 fimbriae of members of the family Enterobacteriaceae. Infect Immun 50: 338-340.
  8. Clegg S, Gerlach GF. 1987. Enterobacterial fimbriae. J Bacteriol 169: 934-938. https://doi.org/10.1128/jb.169.3.934-938.1987
  9. Cohen HJ, Mechanda SM, Lin W. 1996. PCR amplification of the fimA gene sequence of Salmonella typhimurium, a specific method for detection of Salmonella spp. Appl Environ Microbiol 62(12): 4303-4308.
  10. Darwin KH, Miller VL. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12: 405-428. https://doi.org/10.1128/CMR.12.3.405
  11. Dinjus U, Hanvel I, Muller W, Bauerfeind R, Helmuth R. 1997. Detection of the induction of Salmonella enterotoxin gene expression by contact with epithelial cells with RT-PCR. FEMS Microbiol Lett 146(2): 175-178. https://doi.org/10.1111/j.1574-6968.1997.tb10189.x
  12. Donald GG, Joshua F. 2011. The role of the spv genes in Salmonella pathogenesis. Frontiers in Microbiology: 129-138.
  13. Dupre L, Zanetti S, Schito AM, Fadda G, Sechi LA. 2003. Incidence fo virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J Med Microbio 52: 491-498. https://doi.org/10.1099/jmm.0.05038-0
  14. Eaton TJ, Gasson MJ. 2001. Molecular screening of Enterococcus virulence determinants and potential for genetic ex- change between food and medical isolates. Appl Envrion Microbiol 67(4): 1628-1635. https://doi.org/10.1128/AEM.67.4.1628-1635.2001
  15. Fang FC, krause M, Roudier C, Fierer J, Guiney DG. 1991. Growth regulation of a Salmonella plasmid gene essential for virulence. J Bacteriol 173: 6783-6789. https://doi.org/10.1128/jb.173.21.6783-6789.1991
  16. Fisher K, Phillips C. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiology 155: 1749-1757. https://doi.org/10.1099/mic.0.026385-0
  17. Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L. 2006. The role and application of enterococci in food and health. Int J Food Microbiol 106: 1-24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026
  18. Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB. 1994. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to antibiotic determinants. J Bacteriol 176(23): 7335-7344. https://doi.org/10.1128/jb.176.23.7335-7344.1994
  19. Hammerum AM. 2012. Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 18: 619-625. https://doi.org/10.1111/j.1469-0691.2012.03829.x
  20. Hernandeza M, Gomez J, Luqueb I, Herrera S, Maldonadob A, Reguillob L, Astorgav RJ. 2013. Salmonella prevalence and characterization in a free-range pig processing plant: Tracking in trucks, lairage, slaughter line and quartering. Int J Food Microbiol 162: 48-54. https://doi.org/10.1016/j.ijfoodmicro.2012.12.026
  21. Kurkkonen MT, Raunio T, Virkola R, Lahteemaki K, Makela PH, Klemm P, Clegg S, Korhonen TK. 1993. Basement membrane carbohydrate as a target for adhesion binding of type 1 fimbriae of Salmonella enteritidis and Achillea to lamini. Mol Microbiol 7: 227-237.
  22. Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, shao F. 2007. The phosphothreonine lyase avtivity of a bacterial type III effector family. Science 315: 1000-1003. https://doi.org/10.1126/science.1138960
  23. Makino SI, Kurazono H, Chongsanguam M, Hayashi H, Cheun HI, Suzuki S, Shirahata T. 1999. Establishment of the PCR system specific to Salmonella spp. and its application for the inspection of food and fecal samples. J Vet Med Sci 61(11): 1245-1247. https://doi.org/10.1292/jvms.61.1245
  24. Meng J, Doyle MP. 1998. Emerging and evolving microbial food-borne pathogens. Bull Inst Pasteur 96: 151-164. https://doi.org/10.1016/S0020-2452(98)80010-9
  25. Naravaneni R, Jamil K. 2005. Rapid detection of food-borne pathogens by using molecular techniques. J Med Microbiol 54: 51-54. https://doi.org/10.1099/jmm.0.45687-0
  26. Ogier JC, Serror P. 2008. Safety assessment of dairy microorganisms: The Enterococcus genus. Int J Food Microbiology 126: 291-301. https://doi.org/10.1016/j.ijfoodmicro.2007.08.017
  27. Oliveira SD, Rodenbusch CR, Michae GB, Cardoso MI, Canal CW, Brandelli A. 2003. Detection of virulence genes in Salmonella enteritidis isolated from different sources. Braz J Microbiol 34(1): 123-124. https://doi.org/10.1590/S1517-83822003000500042
  28. Pasmans F, Immerseel FV, Heyndrickx MH, Martel A, Godard C, Wildemauwe C, Ducatelle R, Haesebrouck F. 2003. Host adaptation of pigeon isolates of Salmonella enterica subsp. enterica serovar Typhimurium variant Copenhagen phage type 99 is associated with enhanced macrophage cytotoxicity. Infect Immun 71(10): 6068-6074. https://doi.org/10.1128/IAI.71.10.6068-6074.2003
  29. Poeta P, Costa D, Klibi N, Rodrigues J, Torres C. 2006. Phenotype and genotype study of gelatinase and beta-haemolysis activities in fecal enterococci of poultry in Portugal. J Vet Med B Infect Dis Vet Public health 53: 203-208. https://doi.org/10.1111/j.1439-0450.2006.00941.x
  30. Purcell BK, Pruckler J, Clegg S. 1987. Nucleotide sequences of the genes encoding type 1 fimbrial subunit of Klebsiella pneumoniae and Salmonella typhimurium. J Bacteriol 169: 5831-5834. https://doi.org/10.1128/jb.169.12.5831-5834.1987
  31. Qin X, Singh KV, Weinstock GM, Murray BE. 2001. Gharacterizaion of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183(11): 3372-3382. https://doi.org/10.1128/JB.183.11.3372-3382.2001
  32. Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z, Jamil K. 2014. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev Inst Med Trop Sao Paulo 56: 341-346. https://doi.org/10.1590/S0036-46652014000400012
  33. Richards MJ, Edwards JR, Culver DH, Gaynes RP. 2000. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidermiol 21: 510-515. https://doi.org/10.1086/501795
  34. Roberts JC, Singh KV, Okhuysen PC, Murray BE. 2004. Molecular epifemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates. J Clin Microbiol 42(5): 2317-2320. https://doi.org/10.1128/JCM.42.5.2317-2320.2004
  35. Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS. 1999. Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immuno 67(1): 193-200.
  36. Smith RP, Clough HE, Cook AJ. 2010. Analysis of meat juice ELISA results and questionnaire data to investigate farm-level risk factors for Salmonella infection in UK pigs. Zoonoses Public Health 57: 39-48. https://doi.org/10.1111/j.1863-2378.2010.01362.x
  37. Soto SM, Rodríguez I, Rodicio MR, Vila J, Mendoza MC. 2006. Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macrorestriction profiles. J Med Microbio 55: 365-373. https://doi.org/10.1099/jmm.0.46257-0
  38. Swamy SC, Barnhart HM, Lee MD, Dreesen DW. 1996. Virulence determinants invA and spvC in salmonellae isolated from poultry products, wastewater, and human source. Appl Environ Microbiol 62: 3768-3771.
  39. Zhao C, Ge B, Villena JD, Sudler R, Yeh E, Zhao S, White DG, Wagner D, Meng J. 2001. Prevalence of Campylobacter spp., Escherichia coli., and Salmonella Serovars in Retail Chicken, Turkey, Pork, and Beef from the Greater Washington, D.C., Area. Appl Environ Microbiol 67: 5431-5436. https://doi.org/10.1128/AEM.67.12.5431-5436.2001