DOI QR코드

DOI QR Code

Heterogeneous Porous WO3@SnO2 Nanofibers as Gas Sensing Layers for Chemiresistive Sensory Devices

  • Bulemo, Peresi Majura (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jiyoung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Il-Doo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2018.09.08
  • Accepted : 2018.09.17
  • Published : 2018.09.30

Abstract

We employed an unprecedented technique to synthesize porous $WO_3@SnO_2$ nanofibers exhibiting core-shell and fiber-in-tube configurations. Firstly, 2-methylimidazole was uniformly incorporated in as-spun nanofibers containing ammonium metatungstate hydrate and the sacrificial polymer (polyacrylonitrile). Secondly, the 2-methylimidazole on the surfaces of nanofibers was complexed with tin(II) chloride ($SnCl_2$) via simple impregnation of the as-spun nanofibers in ethanol containing tin(II) chloride dihydrate ($SnCl_2{\cdot}2H_2O$). The presence of vacant p-orbitals in tin (Sn) and the nucleophilic nitrogen on the imidazole ring allowed for the reaction between $SnCl_2$ and 2-methylimidazole, forming adducts on the surfaces of the as-spun nanofibers. The calcination of these nanofibers resulted in porous $WO_3@SnO_2$ nanofibers with a higher surface area ($55.3m^2{\cdot}g^{-1}$) and a better response to 1-5 ppm of acetone than pristine $SnO_2$ NFs synthesized using a similar method. An improved response to acetone was achieved upon functionalization of the $WO_3@SnO_2$ nanofibers with catalytic palladium nanoparticles. This work demonstrates the potential application of $WO_3@SnO_2$ nanofibers as sensing layers for chemiresistive sensory devices for the detection of acetone in exhaled breath.

Keywords

References

  1. I. S. Hwang, S. J. Kim, J. K. Choi, J. Choi, H. Ji, G. T. Kim, G. Cao, and J. H. Lee, "Synthesis and Gas Sensing Characteristics of Highly Crystalline ZnO-$SnO_2$ Core-Shell Nanowires", Sens. Actuators, B, Vol. 148, No. 2, pp. 595-600, 2010. https://doi.org/10.1016/j.snb.2010.05.052
  2. T. Li, W. Zeng, and Z. Wang, "Quasi-One-Dimensional Metal-Oxide-Based Heterostructural Gas-Sensing Materials: A Review", Sens. Actuators, B, Vol. 221, pp. 1570-1585, 2015. https://doi.org/10.1016/j.snb.2015.08.003
  3. S. Park, H. Ko, S. Kim, and C. Lee, "Role of the Interfaces in Multiple Networked One-Dimensional Core-Shell Nano-structured Gas Sensors", ACS Appl. Mater. Interfaces, Vol. 6, No. 12, pp. 9595-9600, 2014. https://doi.org/10.1021/am501975v
  4. G. A. Beane, K. Gong, and D. F. Kelley, "Auger and Carrier Trapping Dynamics in Core/Shell Quantum Dots Having Sharp and Alloyed Interfaces", ACS Nano, Vol. 10, No. 3, pp. 3755-3765, 2016. https://doi.org/10.1021/acsnano.6b00370
  5. H. Y. Li, Z. X. Cai, J. C. Ding, and X. Guo, "Gigantically Enhanced NO Sensing Properties of $WO_3/SnO_2$ Double Layer Sensors with Pd Decoration", Sens. Actuators, B, Vol. 220, pp. 398-405, 2015. https://doi.org/10.1016/j.snb.2015.05.091
  6. A. Sharma, M. Tomar, and V. Gupta, "Low Temperature Operating $SnO_2$ Thin Film Sensor Loaded With $WO_3$ Micro-discs with Enhanced Response for $NO_2$ Gas", Sens. Actuators, B, Vol. 161, No. 1, pp. 1114-1118, 2012. https://doi.org/10.1016/j.snb.2011.10.014
  7. N. Van Toan, C. M. Hung, N. Van Duy, N. D. Hoa, D. T. T. Le, and N. Van Hieu, "Bilayer $SnO_2-WO_3$ Nanofilms for Enhanced $NH_3$ Gas Sensing Performance", Mater. Sci. Eng., B, Vol. 224, pp. 163-170, 2017. https://doi.org/10.1016/j.mseb.2017.08.004
  8. L. Yin, D. L. Chen, H. W. Zhang, G. Shao, B. B. Fan, R. Zhang, and G. S. Shao, "In Situ Formation of Au/$SnO_2$ Nanocrystals on $WO_3$ Nanoplates as Excellent Gas-Sensing Materials for $H_2S$ Detection", Mater. Chem. Phys., Vol. 148, No. 3, pp. 1099-1107, 2014. https://doi.org/10.1016/j.matchemphys.2014.09.025
  9. Y. Gui, F. Dong, Y. Zhang, Y. Zhang, and J. Tian, "Preparation and Gas Sensitivity of $WO_3$ Hollow Microspheres and $SnO_2$ Doped Heterojunction Sensors", Mater. Sci. Semicond. Process., Vol. 16, No. 6, pp. 1531-1537, 2013. https://doi.org/10.1016/j.mssp.2013.05.012
  10. M. Morimitsu, Y. Ozaki, S. Suzuki, and M. Matsunaga, "Effects of Surface Modification with Platinum and Ruthenium on Temperature and Humidity Dependence of SnO2-Based CO Gas Sensors", Sens. Actuators, B, Vol. 67, No. 1- 2, pp. 184-188, 2000. https://doi.org/10.1016/S0925-4005(00)00397-X
  11. J. Y. Shen, L. Zhang, J. Ren, J. C. Wang, H. C. Yao, and Z. J. Li, "Highly Enhanced Acetone Sensing Performance of Porous C-Doped $WO_3$ Hollow Spheres by Carbon Spheres as Templates", Sens. Actuators, B, Vol. 239, pp. 597-607, 2017. https://doi.org/10.1016/j.snb.2016.08.069
  12. H. R. Kim, A. Haensch, I. D. Kim, N. Barsan, U. Weimar, and J. H. Lee, "The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of $SnO_2$?Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies", Adv. Funct. Mater., Vol. 21, No. 23, pp. 4456-4463, 2011. https://doi.org/10.1002/adfm.201101154
  13. S. Yoo, J. I. Lee, S. Ko, and S. Park, "Highly Dispersive and Electrically Conductive Silver-Coated Si Anodes Synthesized via a Simple Chemical Reduction Process", Nano Energy, Vol. 2, pp. 1271-1278, 2013. https://doi.org/10.1016/j.nanoen.2013.06.006
  14. P. M. Bulemo, H. J. Cho, D. H. Kim, and I. D. Kim, "Facile Synthesis of Pt-Functionalized Meso/Macroporous $SnO_2$ Hollow Spheres through In Situ Templating with $SnO_2$ for $H_2S$ Sensors", ACS Appl. Mater. Interfaces, Vol. 10, No. 21, pp. 18183-18191, 2018. https://doi.org/10.1021/acsami.8b00901
  15. C. Pettinari, M. Pellei, F. Marchetti, C. Santini, and M. Miliani, "Tin(IV) and Organotin(IV) Complexes Containing Mono or Bidentate N-Donor Ligands-IV. 2-Methyl-, 2- Isopropyl-and 4-Methyl-Imidazole Derivatives: Synthesis, Characterization and Behaviour in Solution", Polyhedron, Vol. 17, No. 4, pp. 561-576, 1998. https://doi.org/10.1016/S0277-5387(97)00330-6
  16. Y. Mizuhata, T. Sasamori, and N. Tokitoh, "Stable Heavier Carbene Analogues", Chem. Rev., Vol. 109, No. 8, pp. 3479-3511, 2009. https://doi.org/10.1021/cr900093s
  17. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide Semiconductor Gas Sensors", Catal. Surv. Asia, Vol. 7, No. 1, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
  18. M. Righettoni, A. Tricoli, and S. E. Pratsinis, "Si:$WO_3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis", Anal. Chem., Vol. 82, No. 9, pp. 3581-3587, 2010. https://doi.org/10.1021/ac902695n
  19. P. M. Bulemo, H. J. Cho, N. H. Kim, and I. D. Kim, "Mesoporous $SnO_2$ Nanotubes via Electrospinning-Etching Route: Highly Sensitive and Selective Detection of $H_2S$ Molecule", ACS Appl. Mater. Interfaces, Vol. 9, No. 31, pp. 26304-26313, 2017. https://doi.org/10.1021/acsami.7b05241
  20. S. J. Choi, F. Fuchs, R. Demadrille, B. Grevin, B. H. Jang, S. J. Lee, J. H. Lee, H. L. Tuller, and I. D. Kim, "Fast Responding Exhaled-Breath Sensors Using $WO_3$ Hemitubes Functionalized by Graphene-Based Electronic Sensitizers for Diagnosis of Diseases", ACS Appl. Mater. Interfaces, Vol. 6, No. 12, pp. 9061-9070, 2014. https://doi.org/10.1021/am501394r