DOI QR코드

DOI QR Code

비파괴검사를 위한 연속형 테라헤르츠 파 기반의 영상화 기술

Imaging Technique Based on Continuous Terahertz Waves for Nondestructive Inspection

  • 오경환 (한양대학교 융합기계공학부) ;
  • 김학성 (한양대학교 기계공학부)
  • Oh, Gyung-Hwan (School of Mechanical Convergence Engineering, Hanyang University) ;
  • Kim, Hak-Sung (School of Mechanical Engineering, Hanyang University)
  • 투고 : 2018.07.04
  • 심사 : 2018.09.10
  • 발행 : 2018.09.30

초록

The paper reviews an improved continuous-wave (CW) terahertz (THz) imaging system developed for nondestructive inspection, such as CW-THz quasi-time-domain spectroscopy (QTDS) and interferometry. First, a comparison between CW and pulsed THz imaging systems is reported. The CW-THz imaging system is a simple, fast, compact, and relatively low-cost system. However, it only provides intensity data, without depth and frequency- or time-domain information. The pulsed THz imaging system yields a broader range of information, but it is expensive because of the femtosecond laser. Recently, to overcome the drawbacks of CW-THz imaging systems, many studies have been conducted, including a study on the QTDS system. In this system, an optical delay line is added to the optical arm leading to the detector. Another system studied is a CW-THz interferometric imaging system, which combines the CW-THz imaging system and far-infrared interferometer system. These systems commonly obtain depth information despite the CW-THz system. Reportedly, these systems can be successfully applied to fields where pulsed THz is used. Lastly, the applicability of these systems for nondestructive inspection was confirmed.

키워드

참고문헌

  1. A. Ditali, M. Ma, and M. Johnston, "X-ray inspection-induced latent damage in DRAM", Reliab. Phys. Symp. Proc., 2006. 44th Ann., IEEE Int., IEEE, pp. 266-269, City, 2006.
  2. G.-M. Zhang, D. M. Harvey, and D. R. Braden, "Microelectronic package characterisation using scanning acoustic microscopy", NDT E Int., Vol. 40, No. 8, pp. 609-617, 2007. https://doi.org/10.1016/j.ndteint.2007.05.002
  3. R. Zoughi, C. Huber, N. Qaddoumi, E. Ranu, V. Otashevich, R. Mirshahi, S. Ganchev, and T. Johnson, "Real-time and on-line near-field microwave inspection of surface defects in rolled steel", Microw. Conf. Proc., Vol. 3, No. xx, pp. 1081-1084, 1997.
  4. B. S. Ferguson, H. Liu, S. Hay, D. Findlay, X. C. Zhang, and D. Abbott, "In vitro osteosarcoma biosensing using THz time domain spectroscopy", Int. Soc. Opt. Photonics, Vol. 5275, No. xx, pp. 304-317, 2004.
  5. M. Yamashita, M. Usami, K. Fukushima, R. Fukasawa, C. Otani, and K. Kawase, "Component spatial pattern analysis of chemicals by use of two-dimensional electro-optic terahertz imaging", Appl. opti., Vol. 44, No. 25, pp. 5198-5201, 2005. https://doi.org/10.1364/AO.44.005198
  6. K. McClatchey, M. T. Reiten, and R. A. Cheville, "Time resolved synthetic aperture terahertz impulse imaging", Appl. phys. lett., Vol. 79, No. 27, pp. 4485-4487, 2001. https://doi.org/10.1063/1.1427745
  7. N. Karpowicz, H. Zhong, J. Xu, K. I. Lin, J. S. Hwang, and X. C. Zhang, "Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging", Semicond. Sci. Technol., Vol. 20, No. xx, pp. 293-299, 2005. https://doi.org/10.1088/0268-1242/20/7/021
  8. C. H. Ryu, S. H. Park, D. H. Kim, K. Y. Jhang, and H. S. Kim, "Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy", Compos. Struct., Vol. 156, No. xx, pp. 338-347, 2016. https://doi.org/10.1016/j.compstruct.2015.09.055
  9. M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, and K. Sakai, "Development of a THz spectroscopic imaging system", Phys. Med. Biol., Vol. 47, No. 21, pp.3749-3753, 2002. https://doi.org/10.1088/0031-9155/47/21/311
  10. M. Scheller and M. Koch, "Terahertz quasi time domain spectroscopy", Opt. Express, Vol. 17, No. 20, pp. 17723-17733, 2009. https://doi.org/10.1364/OE.17.017723
  11. R. B. Kohlhaas, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, "Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm", Opt. Express, Vol. 25, No. 11, pp. 12851-12859, 2017. https://doi.org/10.1364/OE.25.012851
  12. J. S. Yahng, C. S. Park, H. D. Lee, C. S. Kim, D. S. Yee, "High-speed frequency-domain terahertz coherence tomography", Opt. Express, Vol. 24, No. 2, pp. 1053-1061, 2016. https://doi.org/10.1364/OE.24.001053
  13. Y. Wang, Z. Zhao, Z. Chen, L. Zhang, K. Kang, and J. Deng, "Continuous-wave terahertz phase imaging using a far-infrared laser interferometer", Appl. opt., Vol. 50, No. 35, pp. 6452-6460, 2011. https://doi.org/10.1364/AO.50.006452
  14. F. P. Mezzapesa, M. Petruzzella, M. Dabbicco, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and G. Scamarcio, "Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers", IEEE Trans. Terahertz Sci. and Technol., Vol. 4, No. 5, pp. 631-633, 2014. https://doi.org/10.1109/TTHZ.2014.2329312
  15. X. Wang, L. Hou, and Y. Zhang, "Continuous-wave terahertz interferometry with multiwavelength phase unwrapping", Appl. opt., Vol. 49, No. 27, pp. 5095-5102, 2010. https://doi.org/10.1364/AO.49.005095