DOI QR코드

DOI QR Code

A Prediction of Thermal Expansion Coefficient for Compacted Bentonite Buffer Materials

압축 벤토나이트 완충재의 열팽창계수 추정

  • Received : 2018.03.21
  • Accepted : 2018.07.18
  • Published : 2018.09.30

Abstract

A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste. Since the heat generated from spent nuclear fuel in a disposal canister is released to the surrounding buffer materials, the thermal properties of the buffer material are very important in determining the entire disposal safety. Especially, since thermal expansion can cause thermal stress to the intact rock mass in the near-field, it is very important to evaluate thermal expansion characteristics of bentonite buffer materials. Therefore, this paper presents a thermal expansion coefficient prediction model of the Gyeongju bentonite buffer materials which is a Ca-bentonite produced in South Korea. The linear thermal expansion coefficient was measured considering heating rate, dry density and temperature variation using dilatometer equipment. Thermal expansion coefficient values of the Gyeongju bentonite buffer materials were $4.0{\sim}6.0{\times}10^{-6}/^{\circ}C$. Based on the experimental results, a non-linear regression model to predict the thermal expansion coefficient was suggested and fitted according to the dry density.

고준위폐기물을 처분하기 위한 심층처분시스템의 구성 요소로는 처분용기, 완충재, 뒷채움 및 근계 암반이 있다. 이 중 완충재는 심층 처분시스템에 있어 필수적인 요소이다. 처분용기에서 발생하는 고온의 열량은 완충재로 전파되기에 완충재의 열적 특성은 처분시스템의 안정성 평가에 상당히 중요하다고 할 수 있다. 특히, 고온의 열량은 완충재의 열적 팽창을 야기하여 근계 암반에 열응력을 야기할 수 있기에 완충재의 열팽창 특성 규명은 반드시 필요하다고 할 수 있다. 따라서 본 연구에서는 국내 경주산 압축 벤토나이트 완충재(KJ-II)에 대한 열팽창 거동 특성을 실내 실험을 통해 분석하고 선형 열팽창계수에 대한 추정 모델을 제시하고자 하였다. 압축 벤토나이트 완충재의 선형 열팽창계수는 딜라토미터 장비를 이용하여 승온속도, 건조밀도, 온도 범위에 따라 측정되었으며 선형 열팽창계수 값은 대략 $4.0{\sim}6.0{\times}10^{-6}/^{\circ}C$ 로 측정되었다. 또한 실험 데이터를 토대로 비선형 회귀분석 방법을 이용하여 건조밀도에 따른 경주 압축 벤토나이트 완충재의 선형 열팽창계수를 추정할 수 있는 모델을 제시하였다.

Keywords

References

  1. J.Y. Lee, D.K. Cho, H.J. Choi, and J.W. Choi, "Concept of a Korean reference disposal system for spent fuels", J. Nucl. Sci. Technol., 44(12), 1563-1573 (2007).
  2. Swedish Nuclear Fuel Supply Co/Division KBS, "Final storage of spent nuclear fuel-KBS3", Svensk Kärnbränslehantering AB Report, Stockholm (1983).
  3. J.W. Lee, H.J. Choi, and J.Y. Lee, "Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository", Ann. Nucl. Energy, 94, 848-855 (2016). https://doi.org/10.1016/j.anucene.2016.04.053
  4. M.J. Kim, S.R. Lee, S. Yoon, J.S. Jeon, and M.S. Kim, "Effect of thermal properties of bentonite buffer on temperature variation", J. Korean Geotech. Soc., 34(1), 17- 24 (2018). https://doi.org/10.7843/KGS.2018.34.1.17
  5. M. Yoo, H.J. Choi, M.S. Lee, and S.Y. Lee, "Measurement of properties of domestic bentonite for a buffer of an HLW repository", J. Nucl. Fuel Cycle Waste Technol., 14(2), 135-147 (2016). https://doi.org/10.7733/jnfcwt.2016.14.2.135
  6. Karnland, "Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository", Svensk Kärn-bränslehantering AB Report, SKB TR-10-60 (2010).
  7. F.T. Madsen, "Clay mineralogical investigation related to nuclear waste disposal", Clay Mincerals, 33(1), 109-129 (1988).
  8. C. Ould-Lahoucine, H. Sakashita, and T. Kumada, "Measurement of thermal conductivity of buffer materials and evaluation of existing correlation predicting it", Nucl. Eng. Des., 216(1-3), 1-11 (2002). https://doi.org/10.1016/S0029-5493(02)00033-X
  9. A.M. Tang, Y.J. Cui, and T.T. Lee, "A study on the thermal conductivity of compacted bentonite", Appl. Clay Sci., 41(3-4), 181-189 (2008). https://doi.org/10.1016/j.clay.2007.11.001
  10. W.J. Cho, J.W. Lee, and S. Kwon, "An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture", Heat Mass Transf., 47(11), 1385-1393 (2011). https://doi.org/10.1007/s00231-011-0800-1
  11. M. Wang, Y.F. Chen, S. Zhou, R. Hu, and C.B. Zhou, "A homogenization-based model for the effective thermal conductivity of bentonite-sand-based buffer material", Int. Commun. Heat Mass Transf., 68, 43-49 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.08.007
  12. S. Yoon, G.Y. Kim, T.J. Park, and J.K. Lee, "Thermal properties of buffer material for a high-level waste repository considering temperature variation", J. Korean Geotech. Soc., 33(10), 25-31 (2017).
  13. M.V. Villar, P.L. Martin, and J.M. Barcala, "Modification of physical, mechanical and hydraulic properties of bentonite by thermo-hydraulic gradients", Eng. Geol., 81(3), 284-297 (2006). https://doi.org/10.1016/j.enggeo.2005.06.012
  14. J.O. Lee, Y.C. Choi, M.S. Lee, and H.J. Choi, "Thermal expansion characteristics of the compacted bentonite buffer", Proc. of Spring Conf. of J. Nucl. Fuel Cycle Waste Technol., 159-160 (2015).
  15. S. Yoon, G.Y. Kim, and M.H. Baik, "A prediction of specific heat capacity for compacted bentonite buffer", J. Nucl. Fuel Cycle Waste Technol., 15(3), 199-206 (2017). https://doi.org/10.7733/jnfcwt.2017.15.3.199
  16. ASTM E 228: Standard test method for linear thermal expansion of solid materials with a push-rod dilatometer (2017).
  17. J.O. Lee, K. Birch, and H.J. Choi, "Coulped thermalhydro analysis of unsaturated buffer and backfill in a high-level waste repository", Ann. Nucl. Energy, 72, 63-75 (2014).
  18. "Properties of air", Accessed Feb. 20 2018. Available from: http://www.solarview.net/archives/339 (2018).
  19. L. Borgesson, H. Hokmark, and O. Karnland, "Rheological properties of sodium smectite clay", Swedish Nuclear Fuel and Waste Management Co. Report, SKB-TR-88-30 (1988).
  20. K.H. Jeon, "Probabilistic analysis of unsaturated soil properties for Korean weathered granite soil", Master Thesis, KAIST (2012).
  21. N.V. Nikhil and S.R. Lee, "A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea", Geomorph., 263, 50-70 (2016). https://doi.org/10.1016/j.geomorph.2016.03.023
  22. I.H. Lee, "Easy flow regression analysis", Hannarae Publishing Corporation (2014).
  23. J.Y. Park, "Statistical entrainment growth rate estimation model for debris-flow runout prediction", Master Thesis, KAIST (2015).

Cited by

  1. 고준위방사성폐기물 처분시스템의 압축 벤토나이트 완충재의 포화 수리전도도 추정 vol.18, pp.2, 2018, https://doi.org/10.7733/jnfcwt.2020.18.2.133