DOI QR코드

DOI QR Code

SAFT Equation of State for Vapor-liquid Phase Equilibria of Associating Fluid Mixtures

SAFT 상태 방정식과 회합성 유체 혼합물의 기액 상평형

  • Chang, Jaeeon (Department of Chemical Engineering, University of Seoul)
  • 장재언 (서울시립대학교 화학공학과)
  • Received : 2018.07.16
  • Accepted : 2018.09.12
  • Published : 2018.10.01

Abstract

We review SAFT equation of state (EOS) which is based on TPT theory and statistical-mechanical principles, and confirm that it can be used as a useful tool to predict vapor-liquid phase equilibria of associating fluid mixtures. We examine theoretical structure of PC-SAFT EOS in great detail, and then assess the applicability and performance of the EOS while applying it to various mixtures containing nonpolar components, polar components and associating components in a stage-wise manner. In contrast to the conventional engineering EOS, PC-SAFT EOS can accurately predict nonideal behaviors of those mixtures without using semi-empirical binary interaction parameter. This is because the SAFT theory is based on a rigorous theoretical framework at molecular level which effectively accounts for various intermolecular interactions, and it thus provides substantial benefits in applying the SAFT EOS to complex thermodynamic phenomena of multi-component mixtures.

SAFT 상태 방정식이 기초하는 TPT 이론과 통계역학적 원리를 개괄하고, 회합성 유체 혼합물의 기액 상평형을 예측하는 유용한 도구로 사용될 수 있음을 확인한다. PC-SAFT 상태 방정식의 이론적 구조를 상세히 검토하고, 비극성 혼합물, 극성혼합물, 회합성혼합물에단계적으로적용하는과정을통하여, 상태방정식의적용성과성능을평가한다. PC-SAFT 상태 방정식은 기존의 공학용 상태 방정식과는 대조적으로, 경험적인 이성분 상호작용 매개변수의 사용 없이 다양한 혼합물들의 비이상적 거동을 정확하게 예측할 수 있다. 이는 SAFT 이론이 분자들 사이의 다양한 상호작용을 효과적으로 반영하는 분자 수준의 엄밀한 이론 체계에 기초하기 때문이며, 다성분 혼합물의 복잡한 열역학적인 현상에 대한 응용에서 실질적 이점을 제공한다.

Keywords

References

  1. Sandler, S. I., Chemical, Biochemical and Engineering Thermodynamics 4th ed., John Wiley & Sons (2006).
  2. Soave, G., "Equilibrium Constants from a Modified Redlich- Kwong Equation of State," Chem. Eng. Sci., 27, 1197-1203(1972). https://doi.org/10.1016/0009-2509(72)80096-4
  3. Peng, D.-Y. and Robinson, D. B., "A New Two-constant Equation of State," Ind. Eng. Chem. Fundam., 15, 59-64(1976). https://doi.org/10.1021/i160057a011
  4. Wertheim, M. S., "Fluids with Highly Directional Attractive Forces. I. Statistical Thermodynamics," J. Stat. Phys., 35, 19-34 (1984). https://doi.org/10.1007/BF01017362
  5. Wertheim, M. S., "Fluids with Highly Directional Attractive Forces. II. Thermodynamic Perturbation Theory and Integral Equations," J. Stat. Phys., 35, 35-47(1984). https://doi.org/10.1007/BF01017363
  6. Wertheim, M. S., "Fluids with Highly Directional Attractive Forces. III. Multiple Attraction Sites," J. Stat. Phys., 42, 459-476 (1986). https://doi.org/10.1007/BF01127721
  7. Wertheim, M. S., "Fluids with Highly Directional Attractive Forces. IV. Equilibrium Polymerization," J. Stat. Phys., 42, 477-492(1986). https://doi.org/10.1007/BF01127722
  8. Wertheim, M. S., "Fluids of Dimerizing Hard Spheres, and Fluid Mixtures of Hard Spheres and Dispheres," J. Chem. Phys., 85, 2929-2936(1986). https://doi.org/10.1063/1.451002
  9. Wertheim, M. S., "Thermodynamic Perturbation Theory of Polymerization," J. Chem. Phys., 87, 7323-7331(1987). https://doi.org/10.1063/1.453326
  10. Chapman, W. G., Jackson, G. and Gubbins, K. E., "Phase Equilibria of Associating Fluids. Chain Molecules with Multiple Bonding Sites," Mol. Phys., 65, 1057-1079(1988). https://doi.org/10.1080/00268978800101601
  11. Chang, J. and Sandler, S. I., "An Equation of State for the Hardsphere Chain Fluid: Theory and Monte Carlo Simulation," Chem. Eng. Sci., 49, 2777-2791(1994). https://doi.org/10.1016/0009-2509(94)E0097-A
  12. Ghonasgi, D. and Chapman, W. G., "A New Equation of State for Hard Chain Molecules," J. Chem. Phys., 100, 6633-6639(1994). https://doi.org/10.1063/1.467021
  13. Chang, J. and Sandler, S. I., "The Correlation Functions of Hardsphere Chain Fluids: Comparison of the Wertheim Integral Equation Theory with the Monte Carlo Simulation," J. Chem. Phys., 102, 437-449(1995). https://doi.org/10.1063/1.469421
  14. Chang, J. and Sandler, S. I., "The Wertheim Integral Equation Theory with the Ideal Chain Approximation and the TPT-Dimer Equation of State: Generalization to Mixtures of Hard-sphere Chain Fluids," J. Chem. Phys., 103, 3196-3211(1995). https://doi.org/10.1063/1.470252
  15. Kalyuzhnyi, Y. V. and Cummings, P. T., "Solution of the Polymer Percus-Yevick Approximation for the Multicomponent Totally Flexible Sticky Two-point Model of Polymerizing Fluid," J. Chem. Phys., 103, 3265-3267(1995). https://doi.org/10.1063/1.470259
  16. Chang, J. and Kim, H., "The Correlation Function of Hard-sphere Chains: Monodisperse Chains as a Complete Association Limit," J. Chem. Phys. 109, 2579-2587(1998). https://doi.org/10.1063/1.476832
  17. Stell, G., Lin, C. T. and Kalyuzhnyi, Y. V., "Equations of State of Freely Jointed Hard-sphere Chain Fluids: Theory," J. Chem. Phys., 110, 5444-5457(1999). https://doi.org/10.1063/1.478440
  18. Stell, G., Lin, C. T. and Kalyuzhnyi, Y. V., "Equations of State of Freely Jointed Hard-sphere Chain Fluids: Numerical Results," J. Chem. Phys., 110, 5458-5468(1999). https://doi.org/10.1063/1.478441
  19. Kalyuzhnyi, Y. V., McCabe, C., Whitebay, E. and Cummings, P. T., "Equation of State and Liquid-vapor Equilibria of one- and Two-yukawa Hard-sphere Chain Fluids: Theory and Simulation," J. Chem. Phys., 121, 8128-8137(2004). https://doi.org/10.1063/1.1798054
  20. Chang, J., "Supplementary Graphical Analysis for the Multidensity Expansion of Associating Fluids," Kor. J. Che. Eng., 31, 374-380(2014). https://doi.org/10.1007/s11814-013-0283-5
  21. Chapman, W. G., Gubbins, K. E., Jackson, G. and Radosz, M., "SAFT: Equation-of-state Solution Model for Associating Fluids," Fluid Phase Equilib., 52, 31-38(1989). https://doi.org/10.1016/0378-3812(89)80308-5
  22. Chapman, W. G., Gubbins, K. E., Jackson, G. and Radosz, M., "New Reference Equation of State for Associating Liquids," Ind. Eng. Chem. Res., 29, 1709-1721(1990). https://doi.org/10.1021/ie00104a021
  23. Huang, S. H. and Radosz, M., "Equation of State for Small, Large, Polydisperse, and Associating Molecules," Ind. Eng. Chem. Res., 29, 2284-2294(1990). https://doi.org/10.1021/ie00107a014
  24. Huang, S. H. and Radosz, M., "Equation of State for Small, Large, Polydisperse, and Associating Molecules: Extension to Fluid Mixtures," Ind. Eng. Chem. Res., 30, 1994-2005(1991). https://doi.org/10.1021/ie00056a050
  25. Gil-Villegas, A., Galindo, A., Whitehead, P. J., Mills, S. J., Jackson, G. and Burgess, A. N., "Statistical Associating Fluid Theory for Chain Molecules with Attractive Potentials of Variable Range," J. Chem. Phys., 106, 4168-4186(1997). https://doi.org/10.1063/1.473101
  26. Blas, F. J. and Vega, L. F., "Prediction of Binary and Ternary Diagrams Using the SAFT Equation of State," Ind. Eng. Chem. Res., 37, 660-674(1998). https://doi.org/10.1021/ie970449+
  27. Gross, J. and Sadowski, G., "Perturbed-chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules," Ind. Eng. Chem. Res., 40, 1244-1260(2001). https://doi.org/10.1021/ie0003887
  28. Gross, J. and Sadowski, G., "Application of the Perturbed-chain SAFT Equation of State to Associating Systems," Ind. Eng. Chem. Res., 41, 5510-5515(2002). https://doi.org/10.1021/ie010954d
  29. Yeom, M. S., Chang, J. and Kim, H., "Equation of State Based on the Thermodynamic Perturbation Theory of Sequential Polymerization for Associating Molecules and Polymers," Fluid Phase Equilib., 194-197, 579-586(2002). https://doi.org/10.1016/S0378-3812(01)00771-3
  30. Lafitte, T., Apostolakou, A., Avendano, C., Galindo, A., Adjiman, C. S., Muller, E. A. and Jackson, G., "Accurate Statistical Associating Fluid Theory for Chain Molecules Formed from Mie Segments," J. Chem. Phys., 139, 154504(2013). https://doi.org/10.1063/1.4819786
  31. Wei, Y. S. and Sadus, R. J., "Equations of State for the Calculation of Fluid-phase Equilibria," AIChE J., 46, 169-196(2000). https://doi.org/10.1002/aic.690460119
  32. Muller, E. A. and Gubbins, K. E., "Molecular Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches," Ind. Eng. Chem. Res., 40, 2193-2211(2001). https://doi.org/10.1021/ie000773w
  33. Tan, S. P., Adidharma, H. and Radosz, M., "Recent Advances and Applications of Statistical Associating Fluid Theory," Ind. Eng. Chem. Res., 47, 8063-8082(2008). https://doi.org/10.1021/ie8008764
  34. Chang, J. and Sandler, S. I., "A Real Function Representation for the Structure of the Hard Sphere Fluid," Mol. Phys., 81, 735-744(1994). https://doi.org/10.1080/00268979400100491
  35. Carnahan, N. F. and Starling, K. E., "Equation of State for Nonattracting Rigid Spheres," J. Chem. Phys., 51, 635-636(1969). https://doi.org/10.1063/1.1672048
  36. McQuarrie, D. A., Statistical Mechanics, Harper and Row, New York(1976).
  37. Boublík, T., "Hard-sphere Equation of State," J. Chem. Phys., 53, 471-472(1970). https://doi.org/10.1063/1.1673824
  38. Mansoori, G. A., Carnahan, N. F., Starling, K. E., and Leland, T. W., "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres," J. Chem. Phys., 54, 1523-1525(1971). https://doi.org/10.1063/1.1675048
  39. Barker, J. A. and Henderson, D., "Perturbation Theory and Equation of State for Fluids: The Square-well Potential," J. Chem. Phys., 47, 2856-2861(1967). https://doi.org/10.1063/1.1712308
  40. Chang, J. and Sandler, S. I., "A Completely Analytical Perturbation Theory for the Square-well Fluid of Variable Well Width," Mol. Phys., 81, 745-765(1994). https://doi.org/10.1080/00268979400100501
  41. Gross, J. and Sadowski, G., "Application of Perturbation Theory to a Hard-chain Reference Fluid: An Equation of State for Square-well Chains," Fluid Phase Equilib., 168, 183-199(2000). https://doi.org/10.1016/S0378-3812(00)00302-2
  42. Lemmon, E. W., McLinden M. O. and Friend, D. G., "Thermophysical Properties of Fluid Systems," in NIST Chemistry Web-Book, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved April 10, 2018).
  43. CHERIC Korea Thermophysical Properties Data Bank, https://www.cheric.org/research/kdb.
  44. Jog, P. K. and Chapman, W. G., "Application of Wertheim's Thermodynamic Perturbation Theory to Dipolar Hard Sphere Chains," Mol. Phys., 97, 307-319(1999). https://doi.org/10.1080/00268979909482832
  45. Rushbrooke, G. S., Stell, G. and Hoye, J. S., "Theory of Polar Liquids I. Dipolar Hard Spheres," Mol. Phys., 26, 1199-1215(1973). https://doi.org/10.1080/00268977300102411
  46. Jog, P. K., Sauer, S. G., Blaesing, J. and Chapman, W. G., "Application of Dipolar Chain Theory to the Phase Behavior of Polar Fluids and Mixtures," Ind. Eng. Chem. Res., 40, 4641-4648(2001). https://doi.org/10.1021/ie010264+
  47. Sauer, S. G. and Chapman, W. G., "A Parametric Study of Dipolar Chain Theory with Applications to Ketone Mixtures," Ind. Eng. Chem. Res., 42, 5687-5696(2003). https://doi.org/10.1021/ie034035u
  48. Dominik, A., Chapman, W. G., Kleiner, M. and Sadowski, G., "Modeling of Polar Systems with the Perturbed-chain SAFT Equation of State. Investigation of the Performance of Two Polar Terms," Ind. Eng. Chem. Res., 44, 6928-6938(2005). https://doi.org/10.1021/ie050071c
  49. Gross, J. and Vrabec, J., "An Equation-of-state Contribution for Polar Components: Dipolar Molecules," AIChE J., 52, 1194-1204 (2006). https://doi.org/10.1002/aic.10683
  50. Al-Saifi, N. M., Hamad, E. Z. and Englezos, P., "Prediction of Vapor-liquid Equilibrium in Water-alcohol-hydrocarbon Systems with the Dipolar Perturbed-chain SAFT Equation of State," Fluid Phase Equilib., 271, 82-93(2008). https://doi.org/10.1016/j.fluid.2008.06.015
  51. Wolbach, J. P. and Sandler, S. I., "Using Molecular Orbital Calculations to Describe the Phase Behavior of Cross-associating Mixtures," Ind. Eng. Chem. Res., 37, 2917-2928(1998). https://doi.org/10.1021/ie970781l
  52. Kleiner, M. and Sadowski, G., "Modeling of Polar Systems Using PCP-SAFT: An Approach to Account for Induced-association Interactions," J. Phys. Chem. C, 111, 15544-15553(2007). https://doi.org/10.1021/jp072640v
  53. Flory, P. J., Principles of Polymer Chemistry, Cornell University Press(1953).