DOI QR코드

DOI QR Code

A Combination and Calibration of Multi-Model Ensemble of PyeongChang Area Using Ensemble Model Output Statistics

Ensemble Model Output Statistics를 이용한 평창지역 다중 모델 앙상블 결합 및 보정

  • Hwang, Yuseon (Department of Applied Mathematics, Kongju National University) ;
  • Kim, Chansoo (Department of Applied Mathematics, Kongju National University)
  • Received : 2018.03.20
  • Accepted : 2018.06.26
  • Published : 2018.09.30

Abstract

The objective of this paper is to compare probabilistic temperature forecasts from different regional and global ensemble prediction systems over PyeongChang area. A statistical post-processing method is used to take into account combination and calibration of forecasts from different numerical prediction systems, laying greater weight on ensemble model that exhibits the best performance. Observations for temperature were obtained from the 30 stations in PyeongChang and three different ensemble forecasts derived from the European Centre for Medium-Range Weather Forecasts, Ensemble Prediction System for Global and Limited Area Ensemble Prediction System that were obtained between 1 May 2014 and 18 March 2017. Prior to applying to the post-processing methods, reliability analysis was conducted to identify the statistical consistency of ensemble forecasts and corresponding observations. Then, ensemble model output statistics and bias-corrected methods were applied to each raw ensemble model and then proposed weighted combination of ensembles. The results showed that the proposed methods provide improved performances than raw ensemble mean. In particular, multi-model forecast based on ensemble model output statistics was superior to the bias-corrected forecast in terms of deterministic prediction.

Keywords

References

  1. Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 1434-1456. https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
  2. Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887-2908. https://doi.org/10.1002/qj.49712556006
  3. Delle Monache, L., J. P. Hacker, Y. Zhou, X. Deng, and R. B. Stull, 2006: Probabilistic aspects of meteorological and ozone regional ensemble forecasts. J. Geophy. Res., 111, D24307, doi:10.1029/2005JD006917.
  4. Fraley, C., A. E. Raftery, and T. Gneiting, 2010: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Mon. Wea. Rev., 138, 190-202, doi:10.1175/2009MWR3046.1.
  5. Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359-378. https://doi.org/10.1198/016214506000001437
  6. Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005:Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098-1118. https://doi.org/10.1175/MWR2904.1
  7. Hagedorn, R., F. Doblas-Reyes, and T. N. Palmer, 2005:The rationale behind the success of multi-model ensembles in seasonal forecasting-I. Basic concept. Tellus A, 57, 219-233.
  8. Hagedorn, R., T. M. Hamil, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: Two-meter temperatures. Mon. Wea. Rev., 136, 2608-2619. https://doi.org/10.1175/2007MWR2410.1
  9. Hagedorn, R., R. Buizza, T. M. Hamil, M. Leutbecher, and T. N. Palmer, 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 1814-1827, doi:10.1002/qj.1895.
  10. Hamil, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550-560. https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
  11. Han, K., J. Choi, and C. Kim, 2016a: Calibration of probabilistic forecast of temperature in PyeongChang area using Bayesian model averaging. J. Clim. Res., 11, 49-67, doi: 10.14383/cri.2016.11.1.49.
  12. Han, K., J. Choi, and C. Kim, 2016b: Comparison of prediction performance using statistical postprocessing methods. Asia-Pac. J. Atmos. Sci., 52, 495-507, doi:10.1007/s13143-016-0034-8.
  13. Johnson, C., and R. Swinbank, 2009: Medium-range multimodel ensemble combination and calibration. Quart. J. Roy. Meteor. Soc., 135, 777-794. https://doi.org/10.1002/qj.383
  14. Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 3515-3539. https://doi.org/10.1016/j.jcp.2007.02.014
  15. Marzban, C., R. Wang, F. Kong, and S. Leyton, 2011: On the effect of correlations on rank histograms: Reliability of temperature and wind speed forecasts from finescale ensemble reforecasts. Mon. Wea. Rev., 139, 295-310, doi:10.1175/2010MWR3129.1.
  16. Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System:Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73-119. https://doi.org/10.1002/qj.49712252905
  17. Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 49-66. https://doi.org/10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2
  18. Park, Y.-Y., R. Buizza, and M. Leutbecher, 2008: TIGGE:Preliminary results on comparing and combining ensembles. Quart. J. Roy. Meteor. Soc., 134, 2029-2050. https://doi.org/10.1002/qj.334
  19. Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155-1174. https://doi.org/10.1175/MWR2906.1
  20. Seong, M.-G., C. Kim, and M.-S. Suh, 2015: Inter-comparison of prediction skills of multiple linear regression methods using monthly temperature simulated by multi-regional climate models. Atmosphere, 25, 669-683, doi:10.14191/Atmos.2015.25.4.669 (in Korean with English abstract).
  21. Seong, M.-G., M.-S. Suh, and C. Kim, 2017: Intercomparison of prediction of ensemble methods using monthly mean temperature simulated by CMIP5 models. Asia-Pac. J. Atmos. Sci., 53, 339-351, doi:10.1007/s13143-017-0039-y.
  22. Sloughter, J. M., T. Gneiting, and A. E. Raftery, 2010:Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. J. Amer. Stat. Assoc., 105, 25-35. https://doi.org/10.1198/jasa.2009.ap08615
  23. Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317-2330. https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
  24. Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A, 60, 62-79. https://doi.org/10.1111/j.1600-0870.2007.00273.x