References
- A. Yilmaz, O. Javed, and M. Shah, "Object tracking: A survey," Acm computing surveys (CSUR), vol.38, no.4, pp. 13, 2006. DOI:10.1145/1177352.1177355
- S. Salti, A. Cavallaro, and L. D. Stefano, "Adaptive appearance modeling for video tracking: Survey and evaluation," Image Processing, IEEE Transactions on, vol.21, no.10, pp. 4334-4348, 2012. DOI:10.1109/TIP.2012.2206035
- Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark. In Computer vision and pattern recognition," CVPR, 2013 IEEE Conference on, pp. 2411-2418. 2013.
- A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, "Visual tracking: An experimental survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, no.7, pp. 1442-1468, 2014. DOI:10.1109/TPAMI.2013.230
- Boddeti, V.N., Kanade, T., Kumar, B.V.: "Correlation filters for object alignment," CVPR 2013 IEEE Conference on, pp. 2291-2298, 2013. DOI:10.1109/CVPR.2013.297
- Galoogahi, H.K., Sim, T., Lucey, S. "Multichannel correlation filters," ICCV, pp. 4321-4328, 2013. DOI:10.1109/ICCV.2013.381
- Henriques, J. F., Carreira, J., Caseiro, R., Batista, J, "Beyond hard negative mining: Efficient detector learning via block-circulant decomposition," ICCV, pp. 2760-2767, 2013. DOI:10.1109/ICCV.2013.343
- Revaud, J., Douze, M., Cordelia, S., Jgou, H, "Event retrieval in large video collections with circulant temporal encoding," CVPR, 2013, pp. 2459-2466.
- D. S. Bolme, J. R. Beveridge, B. A. Draper, Lui, Y. M, "Visual object tracking using adaptive correlation filters," CVPR, pp. 2544-2550, 2010. DOI:10.1109/CVPR.2010.5539960
- Henriques, J. F., Carreira, J., Caseiro, R., Batista, J, "Beyond hard negative mining: Efficient detector learning via block-circulant decomposition," ICCV, pp. 2760-2767, 2013. DOI:10.1109/ICCV.2013.343
- M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Cehovin, G. Nebehay, T. Vojir, G. Fernandez, A. Lukezic, A. Dimitriev, et al, "The visual object tracking vot 2014 challenge results," Computer Vision-ECCV 2014 Workshops, 2014, pp. 191-217.
- D. Comaniciu, V. Ramesh, and P. Meer, "Kernel-based object tracking. Pattern Analysis and Machine Intelligence," IEEE Transactions on, vol.25, no.5, pp. 564-577, 2003. DOI:10.1109/TPAMI.2003.1195991
- T. Poggio and G. Cauwenberghs, "Incremental and decremental support vector machine learning," Advances in neural information processing systems, pp. 409, 2001.
- A. Adam, E. Rivlin, and I. Shimshoni, "Robust fragmentsbased tracking using the integral histogram," Computer vision and pattern recognition, 2006 IEEE Computer Society Conference on, vol.1, pp. 798-805, 2006. DOI10.1109/CVPR.2006.256
- X. Mei and H. Ling, "Robust visual tracking using L1 minimization," Computer Vision, 2009 IEEE 12th International Conference on, pp. 1436-1443, 2009. DOI:10.1109/ICCV.2009.5459292
- T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, "Robust visual tracking via multi-task sparse learning," Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2042-2049, 2012. DOI:10.1109/CVPR.2012.6247908
- T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, "Low-rank sparse learning for robust visual tracking," Computer Vision-ECCV 2012, pp. 470-484, 2012. DOI:10.1007/978-3-642-33783-3_34
- T. Zhang, S. L. C. Xu, S. Yan, B. Ghanem, N. Ahuja, and M.-H. Yang, "Structural sparse tracking," Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on, pp. 150-158, 2015. DOI:10.1109/CVPR.2015.7298610
- B. Babenko, M.-H. Yang, and S. Belongie, "Visual tracking with online multiple instance learning," Computer Vision and Pattern Recognition, CVPR 2009. IEEE Conference on, pp. 983-990, 2009. DOI:10.1109/CVPR.2009.5206737
- S. Avidan, "Ensemble tracking," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.29, no.2, pp. 261-271, 2007. DOI:10.1109/TPAMI.2007.35
- S. Avidan, "Support vector tracking," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.26, no.8, pp. 1064-1072, 2004. DOI:DOI:10.1109/TPAMI.2004.53
- B. Vijaya Kumar, "Minimum-variance synthetic discriminant functions," JOSA A, vol.3, no.10, pp. 1579-1584, DOI:1986.10.1364/JOSAA.3.001579
- J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "Exploiting the circulant structure of tracking-by-detection with kernels," Computer Vision-ECCV 2012, pp. 702-715, 2012. DOI:10.1007/978-3-642-33765-9_50
- J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "High speed tracking with kernelized correlation filters," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.37, no.3, pp. 583-596, 2015. DOI:10.1109/TPAMI.2014.2345390
- T. Liu, G. Wang, and Q. Yang, "Real-time part-based visual tracking via adaptive correlation filters," Intelligence, pp. 2345-2390, 2015. DOI:10.1109/CVPR.2015.7299124
- C. Ma, X. Yang, C. Zhang, and M.-H. Yang, "Long-term correlation tracking," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5388-5396, 2015. DOI:10.1109/CVPR.2015.7299177
- Henriques, J. F., Caseiro, R., Martins, P., Batista, J. "High-speed tracking with kernelized correlation filters," TPAMI, vol.37, no.3, pp. 583-596, 2015. DOI:10.1109/TPAMI.2014.2345390
- Galoogahi, H. K., Sim, T., Lucey, S, "Multichannel correlation filters," ICCV, pp. 4321-4328, 2013. DOI:10.1109/ICCV.2013.381