참고문헌
- J. N. Zagrajek and R. Weron, "Modeling electricity loads in California: ARMA model with hyperbolic noise," Signal Processing, Vol. 82, No. 12, pp. 1903-1915, 2002. DOI:10.1016/S0165-1684(02)00318-3
- V. M. Bianco and S. Nardini, “Linear regression models to forecast electricity consumption in Italy,” Energy Sources, Part B: Economics, Planning and Policy, Vol. 8, No. 1, pp. 86-93, 2013. DOI:10.1080/15567240903289549
- G. Dudek, "Multivariate Regression Tree for Pattern-Based Forecasting Time Series with Multiple Seasonal Cycles," Proc. of 38th International Conference on Information Systems Architecture and Technology-ISAT 2017, pp. 85-94, 2017. DOI:10.1007/978-3-319-67220-5_8
- R. K. Jain, K. M. Smith, P. J. Culligan and J. E. Taylor, "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Vol. 123, pp. 168-178, 2014. DOI:10.1016/j.apenergy.2014.02.057
- M. A. Daut, M. Y. Hassan, H. Abdullah, H. A. Rahman, M. P. Abdullah and F. Hussin, "Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review," Renewable and Sustainable Energy Reviews, 70, pp. 1108-1118, 2017. DOI:10.1016/j.rser.2016.12.015
- N. Ding, C. Benoit, G. Foggia, Y. Besanger and F. Wurtz, “Neural Network-Based Model Design for Short-Term Load Forecast in Distribution Systems,” IEEE Transactions on Power Systems, Vol. 31, No. 1, pp. 72-81, 2016. DOI:10.1109/TPWRS.2015.2390132
- F. Rodrigues, C. Cardeira and J. M. F Calado, "The Daily and Hourly Energy Consumption and Load Forecasting Using Artificial Neural Network Method: A Case Study Using a Set of 93 Households in Portugal," Energy Procedia, Vol. 62, pp. 220-229, 2014. DOI:10.1016/j.egypro.2014.12.383
- W. Mai, C. Y. Chung, T. Wu and H. Huang, "Electric load forecasting for large office building based on radial basis function neural network," In Proceedings of the 2014 IEEE PES General Meeting Conference & Exposition, pp. 1-5, 2014. DOI:10.1109/PESGM.2014.6939378
- B. S. Kwon, R. J. Park and K. B. Song, “Analysis of Short-Term Load Forecasting Accuracy Based on Various Normalization Methods,” Journal of Korean Institute of Illuminating and Electrical Installation Engineers, Vol. 32, No. 06, pp. 30-33, 2018.
- P. A. Farhad and B. Stephen, "Preconditioned Data Sparsification for Big Data with Applications to PCA and K-means," IEEE Transactions on Information Theory, Vol. 63, No. 5, pp. 2954-2974, 2017. DOI:10.1109/TIT.2017.2672725
- A. David and S. Vassilvitskii, "k-means++: The Advantages of Careful Seeding," Proceeding of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007.
- M. Riedmiller and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," In Proceedings of IEEE International Conference on Neural Networks, 1993. DOI:10.1109/ICNN.1993.298623