DOI QR코드

DOI QR Code

방음벽의 유무에 따른 박스형 거더교의 풍력계수 평가

Evaluation of Wind Force Coefficients of a Box-Type Girder Bridge with Noise Barriers

  • 정승환 (국민대학교 건설시스템공학부) ;
  • 이영기 (국민대학교 건설시스템공학부)
  • 투고 : 2018.07.08
  • 심사 : 2018.08.21
  • 발행 : 2018.10.01

초록

본 연구에서는 바람의 영향을 받는 박스형 콘크리트 거더교에 대한 풍력계수를 산정하기 위하여 전산유체해석(CFD)를 수행하였다. 방음벽이 없는 교량 단면에 대한 항력계수, 양력계수 및 비틀림모멘트계수를 산정하였고, 이 풍력계수 값들을 다양한 높이의 방음벽을 갖는 교량 단면에 대한 풍력계수 값들과 비교하였다. 전산유체해석에서 풍력계수들을 산정할 때 전단응력수송(SST) $k-{\omega}$ 난류 모델을 적용하였고, 마찰 항력계수가 전체 항력계수에 미치는 기여도를 조사하였다. 연구 결과, 바람이 수평으로 불 때 항력계수는 방음벽의 높이가 커질수록 증가하였고, 마찰 항력의 기여도는 교량 단면에 방음벽이 없을 때 가장 높았다. 따라서 교량설계에서 풍력을 산정할 때 방음벽의 높이의 영향을 고려할 필요가 있으며, 벽면 마찰력은 교량에 작용하는 풍력을 산정할 때 중요한 역할을 하였다.

In the study, computational fluid dynamics analysis was performed to estimate wind force coefficients for a box-type concrete girder bridge under the influence of wind. The drag, lift and pitching moment coefficients were obtained for the bridge section without noise barrier and compared with those of the bridge section with noise barriers of various heights. The shear stress transport $k-{\omega}$ turbulence model was employed to estimate the wind force coefficients, and the contribution of the friction drag force to the total drag force was investigated. It was found from the study that the drag force coefficients increased as the height of noise barrier increased when a wind blew horizontally, and that the contribution of the friction drag force was highest for the bridge section without noise barrier. It is concluded that the impact of the height of noise barriers should be considered in the design of bridges, and the friction force played an important role in evaluating wind forces on bridges.

키워드

참고문헌

  1. Daewoo Institute of Construction Technology (2017). Wind Safety Investigation Report of Baebang Bridge on Asan-Cheonan Zone 3 (in Korean).
  2. Fransos, D. and Bruno, L. (2010). "Edge degree-of-sharpness and free-stream turbulence scale effects on the aerodynamics of a bridge deck." Journal Wind Eng. Ind. Aerodyn., Vol. 98, pp. 661-671. https://doi.org/10.1016/j.jweia.2010.06.008
  3. Han, Y., Chen, H., Cai, C. S., Xu, G., Shen, L. and Hu, P. (2016). "Numerical analysis on the difference of drag force coefficients of bridge deck sections between the global force and pressure distribution methods." Journal Wind Eng. Ind. Aerodyn., Vol. 159, pp. 65-79. https://doi.org/10.1016/j.jweia.2016.10.004
  4. Korea Institute of Bridge and Structural Engineers.Bridge Design Core Technology Research Group (2015). Highway Bridge Design Code(Limit State Design) and Commentary (in Korean).
  5. Mannini, C., Soda, A. and Schewe, G. (2010). "Unsteady RANS modelling of flow past a rectangular cylinder: Investigation of Reynolds number effects." Computers and Fluids, Vol. 39, No. 9, pp. 1609-1624. https://doi.org/10.1016/j.compfluid.2010.05.014
  6. MIDAS NFX (2017). CFD User's Manual, MIDAS.
  7. Miranda, S., Patruno, L., Ricci, M. and Ubertini, F. (2015). "Numerical study of a twin box bridge deck with increasing gap ratio by using RANS and LES approaches." Engineering Structures, Vol. 99, No. 15, pp. 546-558. https://doi.org/10.1016/j.engstruct.2015.05.017
  8. Myeong, H. G. (2012). CFD, Munundang (in Korean).
  9. Sarwar, M. W., Ishihara, T., Shimada, K., Yamasaki, Y. and Ikeda, T. (2008). "Prediction of aerodynamic characteristics of a box girder bridge section using the LES turbulence model." Journal Wind Eng. Ind. Aerodyn., Vol. 96, pp. 1895-1911. https://doi.org/10.1016/j.jweia.2008.02.015