DOI QR코드

DOI QR Code

Histological Study of Rat Olfactory Mucosa following Inhalation of Xylene

자일렌이 흡입된 흰쥐 후각점막에 대한 조직학적 연구

  • Moon, Yong-Suk (Department of Anatomy, College of Medicine, Catholic University of Daegu)
  • 문용석 (대구가톨릭대학교 의과대학 해부학교실)
  • Received : 2018.07.20
  • Accepted : 2018.08.23
  • Published : 2018.09.30

Abstract

The purpose of this study was to investigate the structure and the glycoconjugate properties of the olfactory mucosa in the rat after inhalation of xylene. Sprague-Dawley male rats were inhalated 300 ppm xylene for 5 times with 5 hours exposure. The olfactory mucosa in the nasal cavity was taken from the animals on 5, 10, 15, 20, and 30 days after inhalation of xylene. The properties of the glycoconjugates in the olfactory mucosa were investigated using 10 biotinylated lectins: (PSA, UEA I, PHA-L, GSL I B4, GSL I, PNA, ECL, SBA, GSL II, and sWGA). In the experimental groups, degenerative changes of the olfactory epithelium were observed until 20 days after inhalation of xylene. In the control group, the olfactory cells in the olfactory epithelium reacted with PSA, UEA I, PNA, SBA, and sWGA, the supporting cells reacted with PSA, PHA-L, GSL I, PNA, ECL, SBA, GSL II, and sWGA, and the Bowman's glands reacted with all 10 lectins. In the experimental groups, the reactivity to PSA, PNA, and SBA in the olfactory cells were decreased, and the reactivity to PSA, PNA, SBA, and GSL II in the supporting cells were decreased. And in the Bowman's gland, the reactivity to PSA, UEA I, GSL I, and sWGA were decreased. Conclusively, the olfactory mucosa was shown a lot of changes in the structure through degenerative process and in the properties of the glycoconjugates after inhalation of xylene. These results suggest that the sugar residues of the glycoconjugates in the olfactory mucosa can be changed by xylene inhalation.

자일렌이 흡입된 흰쥐 후각점막의 구조와 복합당질 특성을 조사할 목적으로 Sprague-Dawley계 수컷 흰쥐를 사용하여 300 ppm의 자일렌을 하루에 5시간씩 5일간 흡입시키고 30일까지 회복시켰다. 자일렌 흡입에 대한 후각점막의 형태적 변화를 비교하였고, PSA, UEA I, PHA-L, GSL I B4, GSL I, PNA, ECL, SBA, GSL II 및 sWGA의 10종류 렉틴을 이용한 렉틴조직화학을 실시하여 복합당질의 특성을 비교하였다. 자일렌 흡입 후 20일까지 후각상피는 상피세포의 수와 상피의 높이가 감소되는 퇴행성 변화를 보였다. 대조군에서 후각상피의 후각신경세포는 PSA, UEA I, PNA, SBA 및 sWGA에서, 지지세포는 PSA, PHA-L, GSL I, PNA, ECL, SBA, GSL II 및 sWGA에서, 그리고 후각샘은 10종류의 모든 렉틴에서 양성반응이 관찰되었다. 실험군에서 후각신경세포는 PSA, PNA 및 SBA에서 반응성이 감소하였고, 지지세포는 PSA, PNA, SBA 및 GSL II에서 반응성이 감소하였으며, 후각샘은 PSA, UEA I, GSL I 및 sWGA에서 그 반응성이 감소하였다. 결론적으로, 자일렌에 노출된 후각점막은 구조와 복합당질양상이 대조군에 비하여 많은 변화를 나타내었다. 이상의 결과들은 후각점막의 복합당질 당잔기가 자일렌 흡입 후에 변화할 수 있음을 시사한다.

Keywords

References

  1. Al-Ghamdi, S. S., Raftery, M. J. and Yaqoob, M. M. 2004. Toluene and p-Xylene induced LLC-PK1 apoptosis. Drug Chem. Toxicol. 27, 425-432. https://doi.org/10.1081/DCT-200039782
  2. Alberts, B., Bray. D.and Lewis, J. 1989. Molecular biology of the cell, pp. 198-300, 2nd ed., Garland Publishing, New York & London.
  3. Allen, H. J., Johnson, E. A. Z. and Matta, K. L. 1977. A comparsion of the binding specificities of lectins from Ulex europaeus and Lotus tetragonolobus. Immunol. Commun. 6, 585-602. https://doi.org/10.3109/08820137709093469
  4. Arts, J. H. E., Rennen, M. A. J. and de Heer, C. 2006. Inhaled formaldehyde : Evaluation of sensory irritation in relation to carcinogenicity. Regul. Toxicol. Pharmacol. 44, 144-160. https://doi.org/10.1016/j.yrtph.2005.11.006
  5. Barber, P. C. 1988. Ulex europeus agglutinin I binds exclusively to primary olfactory neurons in the rat nervous system. Neuroscience 30, 1-9.
  6. Boat, T. F. and Cheng, P. W. 1980. Biochemistry of airway mucus secretions. Fed. Proc. 39, 3067-3074.
  7. Boyd, W. C. and Shapleigh, E. 1954. Specific precipitating activity of plant agglutinins (lectins). Science 119, 419-427.
  8. Carr, W. E. S., Gleeson, R. A. and Trapido-Rosenthal, H. G. 1990. The role of perireceptor events in chemosensory processes. Trends Neurosci. 13, 212-215. https://doi.org/10.1016/0166-2236(90)90162-4
  9. Chang, J. C. F., Gross, E. A., Swenberg, J. A. and Barrow, C. S. 1983. Nasal cavity deposition, histopatology and cell proliferation after single or repeated formaldehyde exposure in B5C3F1 mice and F-344 rats. Tox. App. Pharm. 68, 161-176. https://doi.org/10.1016/0041-008X(83)90001-7
  10. Chen, C. S., Hseu, Y. C., Liang, S. H., Kuo, J. Y. and Chen, S. C. 2008. Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay. J. Hazard Mater 153, 351-356. https://doi.org/10.1016/j.jhazmat.2007.08.053
  11. Chung, W., Yu, I., Park, C., Lee, K., Roh, H. and Cha, Y. 1999. Decreased formation of ethoxyacetic acid from ethylene glycol monoethyl ether and reduced atrophy of testes in male rats upon combined administration with toluene and xylene. Toxicol. Lett. 104, 143-150. https://doi.org/10.1016/S0378-4274(98)00357-9
  12. Condray, R., Morrow, L. A., Steinhauer, S. R., Hodgson, M. and Kelley, M. 2000. Mood and behavioral symptoms in individuals with chronic solvent exposure. Psychiatry Res. 97, 191-206. https://doi.org/10.1016/S0165-1781(00)00217-1
  13. Crowley, I. F., Goldstein, I. J., Arnarp, J. and Lonngren, J. 1984. Carbohydrate binding studies on the lectin from Datura stramonium seeds. Arch. Biochem. Biophys. 231, 524-533. https://doi.org/10.1016/0003-9861(84)90417-X
  14. Damajanov, I. 1987. Lectin cytochemistry and histochemistry. Lab. Invest. 57, 5-20.
  15. de Aquino, T., Zenkner, F. F., Ellwanger, J. H., Pra, D. and Rieger, A. 2016. DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents. An. Acad. Bras. Cienc. 88, 227-236. https://doi.org/10.1590/0001-3765201620150194
  16. Edokpolo, B., Yu, Q. J. and Connell, D. 2014. Health risk assessment of ambient air concentrations of benzene, toluene and xylene (BTX) in service station environments. Int. J. Environ. Res. Public Health 11, 6354-6374. https://doi.org/10.3390/ijerph110606354
  17. Foy, J. W. and Schatz, R. A. 2004. Inhibition of rat respiratory-tract cytochrome P-450 activity after acute low-level m-xylene inhalation: role in 1-nitronaphthalene toxicity. Inhal. Toxicol. 16, 125-132. https://doi.org/10.1080/08958370490270927
  18. Gagnaire, F., Marignac, B., Blachere, V., Grossmann, S. and Langlais, C. 2007. The role of toxicokinetics in xylene-induced ototoxicity in the rat and guinea pig. Toxicology 231, 147-158. https://doi.org/10.1016/j.tox.2006.11.075
  19. Getchell, T. V. and Getchell, M. L. 1990. Regulatory factors in the vertebrate olfactory mucosa. Chem. Senses 15, 223-231. https://doi.org/10.1093/chemse/15.2.223
  20. Graziadei, P. P. C. and Mercalf, I. F. 1971. Autoradiographic and ultrastructural observations in the frog's olfactory mucosa. Z. Zellforsch 116, 305-318. https://doi.org/10.1007/BF00330630
  21. Graziadei, P. P. C. and Monti-Graziadei, G. A. 1979. Neurogenesis and neuron regeneration in the differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 8, 1-8. https://doi.org/10.1007/BF01206454
  22. Hammarstrom, S., Murphy, L. A., Goldstein, I. J. and Etzler, M. E. 1977. Carbohydrate binding specificity of four N-acetyl-D-galactosamine specific lectin; Helix pomatia A hemagglutinin, soybean agglutinin, lima bean lectin, and Dolichos biflorus lectin. Biochemistry 16, 2750-2755. https://doi.org/10.1021/bi00631a025
  23. Hayes, C. E. and Goldstein, I. J. 1974. An ${\alpha}$-D-galactosylbinding lectin from Bandeiraea simplicifolia seeds. J. Biol. Chem. 249, 1904-1914.
  24. Hennigar, R. A., Schulte, B. A. and Spicer, S. S. 1986. Histochemical detection of glycogen using Griffonia simplicifolia agglutinin II. Histochem. J. 18, 589-596. https://doi.org/10.1007/BF01675294
  25. Hirabayashi, J. 2008. Concept, strategy and realization of lectin-based glycan profiling. J. Biochem. 144, 139-147. https://doi.org/10.1093/jb/mvn043
  26. Ito, S., Hayama, K. and Hirabayashi, J. 2009. Enrichment strategies for glycopeptides. Methods Mol. Biol. 534, 195-203.
  27. Kaladas, P. M., Kabat, E. A., Iglesias, J. L., Lis, H. and Sharon, N. 1982. Immunochemical studies on the combining site of D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina cristagalli seeds. Arch. Biochem. Biophys. 217, 624-637. https://doi.org/10.1016/0003-9861(82)90544-6
  28. Kawakami, H., Ito, M., Miura, Y. and Hirano, H. 1992. Lectin-histochemical studies on the process of liver metastasis of mouse colon carcinoma (colon 26) cells. Acta Histochem. Cytochem. 25, 577-582. https://doi.org/10.1267/ahc.25.577
  29. Kim, Y. S., Yoo, H. S. and Ko, J. H. 2009. Implication of aberrant glycosylation in cancer and use of lectin for cancer biomarker discovery. Protein Pept. Lett. 16, 499-507. https://doi.org/10.2174/092986609788167798
  30. Kitada, M., Kuroda, Y. and Dezawa, M. 2011. Lectins as a tool for detecting neural stem/progenitor cells in the adult mouse brain. Anat. Rec. 294, 305-321. https://doi.org/10.1002/ar.21311
  31. Kornfeld, K., Reitman, M. L. and Kornfeld, R. 1981. The carbohydrate-binding specificity of pea and lentil lectins. J. Biol. Chem. 256, 6633-6640.
  32. Kum, C., Kiral, F., Sekkin, S., Seyrek, K. and Boyacioglu, M. 2007. Effects of xylene and formaldehyde inhalations on oxidative stress in adult and developing rats livers. Exp. Anim. 56, 35-42. https://doi.org/10.1538/expanim.56.35
  33. Leathem, A. J. K. and Atkins, N. J. 1986. Lectin binding to paraffin sections. Immunocytochemistry 2, 40-70.
  34. Li, G. L., Yin, S. N., Watanabe, T., Nakatsuka, H., Kasahara, M., Abe, H. and Ikeda, M. 1986. Benzene-specific increase in leukocyte alkaline phosphotase activity in rats exposed to vapors of various organic solvents. J. Toxicol. Environ. Health 19, 581-589. https://doi.org/10.1080/15287398609530954
  35. Liu, B., Bian, H. J. and Bao, J. K. 2010. Plant lectins: potential antineoplastic drugs from bench to clinic. Cancer Lett. 287, 1-12. https://doi.org/10.1016/j.canlet.2009.05.013
  36. Lorin, M. I., Gaerlan, P. F. and Mandel, I. D. 1972. Quantitative composition of nasal secretions in normal subjects. J. Lab. Clin. Med. 80, 275-281.
  37. Maget-Dana, R., Veh, R. W., Sander, M., Roche, A. C., Schauer, R. and Monsigny, M. 1981. Specificities of limulin and wheat-germ agglutinin towards some derivatives of GM3 gangliosides. Eur. J. Biochem. 114, 11-16.
  38. Monti-Graziadei, G. A. M. and Graziadei, P. P. C. 1979. Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J. Neurocytol. 8, 197-213. https://doi.org/10.1007/BF01175561
  39. Morgan, K. T., Gross, E. A. and Patterson, D. L. 1986. Distribution, progression and recovery of acute formaldehyde-induced inhibition of nasal mucociliary in F-344 rats. Tox. App. Pharm. 86, 448-456. https://doi.org/10.1016/0041-008X(86)90372-8
  40. Niaz, K., Bahadar, H., Maqbool, F. and Abdollahi, M. 2015. A review of environmental and occupational exposure to xylene and its health concerns. EXCLI J. 23, 1167-1186.
  41. Qin, W., Xu, Z., Lu, Y., Zeng, C., Zheng, C., Wang, S. and Liu, Z. 2012. Mixed organic solvents induce renal injury in rats. PLoS One 7, e45873. https://doi.org/10.1371/journal.pone.0045873
  42. Rajan, S. T. and Malathi, N. 2014. Health hazards of xylene : a literature review. J. Clin. Diagn. Res. 8, 271-274.
  43. Rusch, G. M., Clary, J. J., Rinehart, W. E. and Bolte, H. F. 1983. A 26-week inhalation toxicity study with formaldehyde in the monkey, rat and hamster. Tox. App. Pharm. 68, 329-343. https://doi.org/10.1016/0041-008X(83)90276-4
  44. Saillenfait, A. M., Gallissot, F., Morel, G. and Bonnet, P. 2003. Developmental toxicities of ethylbenzene, ortho-, meta-, para-xylene and technical xylene in rats following inhalation exposure. Food Chem. Toxicol. 41, 415-429. https://doi.org/10.1016/S0278-6915(02)00231-4
  45. Sandikci, M., Eren, U. and Kum, S. 2007. Effects of formaldehyde and xylene on CD4- and CD8-positive T cells in bronchus-associated lymphoid tissue in rats. Toxicol. Ind. Health 23, 471-477. https://doi.org/10.1177/0748233708089025
  46. Sandikci, M., Seyrek, K., Aksit, H. and Kose, H. 2009. Inhalation of formaldehyde and xylene induces apoptotic cell death in the lung tissue. Toxicol. Ind. Health 25, 455-461 https://doi.org/10.1177/0748233709106824
  47. Scott, T. and Eagleson, M. 1988. Concise encyclopedia biochemistry, pp. 333-334, 2nd ed., Walter de Gruyter: Berlin & New York.
  48. Seo, J. K., Kim, T. S., Shim, I. S., Lee, S. H., Kim, H. M., Yoon, J. H. and Kim, P. J. 2011. A study of applicability to improve risk Assessment guidance. National Institute of Environmental Research, 1-39.
  49. Singh, M. P., Mishra, M., Sharma, A., Shukla, A. K., Mudiam, M. K. R., Patel, D. K., Ram, K. R. and Choedhuri, D. K. 2011. Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene : Attenuation by quercetin and curcumin. Toxicol. Appl. Pharmacol. 253, 14-30. https://doi.org/10.1016/j.taap.2011.03.006
  50. Smart, J. D. 2004. Lectin-mediated drug delivery in the oral cavity. Adv. Drug. Deliv. Rev. 56, 481-489. https://doi.org/10.1016/j.addr.2003.10.016
  51. Spicer, S. S. and Schulte, B. A. 1992. Diversity of cell glycoconjugates shown histochemically : A perspective. J. Histochem. Cytochem. 40, 1-38. https://doi.org/10.1177/40.1.1370305
  52. Suzuki, Y. and Takeda, M. 2000. Basal cells in the mouse olfactory epithelium after axotomy : Immunohistochemical and electron-microscopic studies. Cell Tiss. Res. 266, 239-245.
  53. Tieyu, W., Bo, P., Bing, T., Zhaoyun, Z., Liyu, D. and Yonglong, L. 2014. Benzene homologues in environmental matrixes from a pesticide chemical region in China: Occurrence, health risk and management. Ecotoxicol. Environ. Saf. 104, 357-364. https://doi.org/10.1016/j.ecoenv.2014.01.035
  54. WHO (World Health Organization). 1997. Environmental Health Criteria 190. Xylenes. WHO, Geneva.