DOI QR코드

DOI QR Code

Biological Activity of Oenothera Biennis Seed Extracts

달맞이꽃 종자 추출물의 생리활성

  • Cho, Hyun-Dong (Department of Food Science and Technology, Kyungpook National University) ;
  • Kim, Du-Hyun (Department of Life Resources Industry, Dong-A University) ;
  • Kim, Min-Geun (Department of Life Resources Industry, Dong-A University) ;
  • Lee, Yong-Suk (Department of Biotechnology, Dong-A University) ;
  • Seo, Kwon-Il (Department of Biotechnology, Dong-A University)
  • 조현동 (경북대학교 식품공학부 식품생물공학전공) ;
  • 김두현 (동아대학교 생명자원산업학과) ;
  • 김민근 (동아대학교 생명자원산업학과) ;
  • 이용석 (동아대학교 생명공학과) ;
  • 서권일 (동아대학교 생명공학과)
  • Received : 2018.05.29
  • Accepted : 2018.09.14
  • Published : 2018.09.30

Abstract

In the current study, comparisons of Oenothera Biennis seed extracts with water, ethanol, methanol, and 70% ethanol in their total polyphenolics contents, anti-oxidant, anti-neurotoxicity, anti-cancer, and immune-modulatory activities were investigated. Compared with other extracts, those concentrations of total phenolics and flavonoids were the highest in MeOH extract (31.90 mg GAE/g and 20.66 mg QE/g). The radical scavenging and reducing power activities were dose-dependently increased by treatment of O. Biennis seed water, EtOH, MeOH, and 70% EtOH extracts. Furthermore, pretreatment of water, EtOH, and MeOH extracts significantly reduced glutamate-induced cytotoxicity in HT22 hipocampal neuron cells. In the case of cancer cells, MeOH extracts showed lower $IC_{50}$ values in HepG2 ($74.21{\mu}g/ml$), A549 ($188.24{\mu}g/ml$), MCF-7 ($186.42{\mu}g/ml$), and B16 ($101.80{\mu}g/ml$) than other extracts, where those water ($101.96{\mu}g/ml$) and EtOH ($788.39{\mu}g/ml$) extracts showed the lowest $IC_{50}$ activity in HT-29 and PC-3 cells, respectively. O. Biennis seed extracts did not show any cytotoxicity in RAW 264.7 macrophages at the concentration of $1-10{\mu}g/ml$, whereas 70% EtOH extract dose-dependently enhanced nitric oxide (NO) production in RAW 264.7 cells. Overall, we evaluated that various bioactive potentials of O. Biennis seed extracts which would relate with phenolic compounds abundance, thus these can be useful to future developments as functional food ingredients and natural medicines.

본 연구에서는 달맞이꽃 종자 물, 에탄올, 메탄올 및 70% 에탄올 추출물의 총 폴리페놀 및 플라보노이드 함량, 항산화, 신경세포 손상 억제, 항암, 대식세포 면역조절 활성 및 에 대하여 비교하였다. 달맞이꽃 종자 추출물 중 메탄올 추출물에서 각각 31.90 mg GAE/g 및 20.66 mg QE/g의 총 폴리페놀 및 총 플라보노이드 함량을 나타내었으며 나머지 추출물과 비교하여 가장 활성이 높았다. 라디칼 소거능 및 환원력 활성은 달맞이꽃 종자 추출물의 처리에 따라 농도의존적으로 증가하였다. 또한 물, 에탄올 및 메탄올 추출물을 $25-100{\mu}g/ml$의 농도로 전처리 하였을 때 글루탐산에 의해 유도되는 신경세포 손상 효과를 감소시키는 것으로 확인되었다. 암세포의 경우 메탄올 추출물이 간암, 폐암, 유방암 및 흑색종 피부암의 세포 생존율을 효과적으로 감소시켜 낮은 $IC_{50}$ 값을 보였으며 대장암과 전립선암에서는 물 추출물과 에탄올 추출물이 가장 낮은 $IC_{50}$ 값을 나타내었다. 또한, 달맞이꽃 종자 70% 에탄올 추출물은 RAW 264.7 마우스 대식세포의 생존율에 영향을 미치지 않는 농도에서 유의적으로 산화질소(nitric oxide, NO)의 생성을 통해 대식세포의 면역활성을 유도하였다. 따라서, 달맞이꽃 종자 추출물은 풍부한 폴리페놀 함량과 다양한 생리활성 효능을 나타내며 이를 통해 달맞이꽃 종자 추출물을 기능성 식품 원료 및 천연물 의약품으로 이용할 수 있을 것으로 사료된다.

Keywords

References

  1. Ahn, S. M., Kim, Y. R., Kim, H. N., Choi, Y. W., Lee, J. W., Kim, C. M., Baek, J. U., Shin, H. K. and Choi, B. T. 2015. Neuroprotection and spatial memory enhancement of four herbal mixture extract in HT22 hippocampal cells and a mouse model of focal cerebral ischemia. BMC Complement Altern. Med. 15, doi: 10.1186/s12906-015-0741-1.
  2. Biglari, F., AIKarkhi, A. M. F. and Easa, A. M. 2008. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 107, 1636-1641. https://doi.org/10.1016/j.foodchem.2007.10.033
  3. Blois, M. S. 1958. Antioxidant activity determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  4. Byun, E. B., Jang, B. S., Sung, N. Y. and Byun, E. H. 2016. Immunomodulatory activity of crude polysaccharide separated from Cudrania tricuspidata leaf. J. Kor. Soc. Food Sci. Nutr. 45, 1099-1106. https://doi.org/10.3746/jkfn.2016.45.8.1099
  5. Chalamaiah, M., Yu, W. and Wu, J. 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 245, 205-222. https://doi.org/10.1016/j.foodchem.2017.10.087
  6. Choi, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634. https://doi.org/10.1016/0896-6273(88)90162-6
  7. Cordeiro Caillot, A. R., de Lacerda Bezerra, I., Palhares, L. C. G. F., Santana-Filho, A. P., Chavante, S. F. and Sassaki, G. L. 2018. Structural characterization of blackberry wine polysaccharides and immunomodulatory effects on LPC-activated RAW 264.7 macrophages. Food Chem. 257, 143-149. https://doi.org/10.1016/j.foodchem.2018.02.122
  8. Costa, C., Tsatsakis, A., Mamoulakis, C., Teodoro, M., Briguglio, G., Carusao, E., Tsoukalas, D., Margina, D., Dardiotis, E., Kouretas, D. and Fenga, C. 2017. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 110, 286-299. https://doi.org/10.1016/j.fct.2017.10.023
  9. Fukui, M., Song, J. H., Choi, J., Choi, H. J. and Zhu, B. T. 2009. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 617, 1-11. https://doi.org/10.1016/j.ejphar.2009.06.059
  10. Gan, R. Y., Lui, W. Y., Wu, K., Chan, C. L., Dai, S. H., Sui, Z. Q. and Corke, H. 2017. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 59, 1-14. https://doi.org/10.1016/j.tifs.2016.11.010
  11. Granica, S., Czerwinska, M. E., Piwowarski, J. P., Ziaja, M. and Kiss, A. K. 2013. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J. Agric. Food Chem. 61, 801-810. https://doi.org/10.1021/jf304002h
  12. Gragaham, H. D. 1992. Modified prussian blue assay for total phenolic compound. J. Agric. Food Chem. 40, 801-805. https://doi.org/10.1021/jf00017a018
  13. Hwang, S. W., Park, M. H., Shim, H. K. and Bae, M. J. 1994. Studies on the composition of lipid amino acid and dietary fiber from functional food source. J. Kor. Soc. Food Nutr. 23, 647-653.
  14. Igarashi, M. and Miyazawa, T. 2000. Do conjugated eicosapentaenoic acid and conjugated docosahexaenoic acid induce apoptosis via lipid peroxidation in cultured human tumor cells. Biochem. Biophys. Res. Commun. 270, 649-656. https://doi.org/10.1006/bbrc.2000.2484
  15. Jamarkattel-Pandit, N., Pandit, N. R., Kim, M. Y., Park, S. H., Kim, K. S., Choi, H., Kim, H. and Bu, Y. 2010. Neuroprotective effect of defatted sesame seeds extract against in vitro and in vivo ischemic neuronal damage. Planta. Med. 76, 20-26. https://doi.org/10.1055/s-0029-1185903
  16. Jang, J. K. 2003. Wild plants. Nexus books company, Seoul.
  17. Jo, C. H., Reed, S. C., Simpson, M. J. and Millington, K. J. 2004. The healthy benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J. Hum. Nutr. Diet. 17, 449-459. https://doi.org/10.1111/j.1365-277X.2004.00552.x
  18. Kageyama, K., Yamada, R., Otani, S., Onoyama, Y., Yano, I., Yamaguchi, W., Yamaguchi, Y., Kogawa, H., Nagao, N. and Miwa, N. 2000. Cytotoxicity of docosahexaenoic acid and eicosapentaenoic acid in tumor cells and the dependence on binding to serum proteins and incorporation into intracellular lipids. Oncol. Rep. 7, 79-83.
  19. Kalt, W. 2005. Effects of production and processing factors on major fruit and vegetable antioxidant. J. Food Sci. 70, 11-19. https://doi.org/10.1111/j.1365-2621.2005.tb09053.x
  20. Kang, N. S. and Sohn, E. H. 2010. Immunodulatory effects of fructus and semen from Rosa rugosa on macrophages. Kor. J. Plant Res. 23, 399-405.
  21. Khandrika, L., Kumar, B., Koul, S., Maroni, P. and Koul, H. K. 2009. Role of Oxidative Stress in Prostate Cancer. Cancer Lett. 282, 125-136. https://doi.org/10.1016/j.canlet.2008.12.011
  22. Kim, T. J. 2009. Korean plant edition. Yearim company, Seoul.
  23. Lee, S. M., Choi, H. K. and Yu, G. H. 2003. Effect of bisphenol A, nonylphenol, pentachlorophenol on the proliferation of MCF-7 and PC-3 cells. Kor. J. Biotechnol. Bioeng. 18, 424-428.
  24. Liu, C., Zhu, Y., Lou, W., Nadiminty, N., Chen, X., Zhou, Q., Shi, X. B., White, R. W. and Gao, A. C. 2013. Functional p53 determines Docetaxel sensitivity in prostate cancer cells. Prostate 73, 418-427. https://doi.org/10.1002/pros.22583
  25. Molyneux, P. 2004. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 26, 211-219.
  26. Park, Y. J., Cheon, G. Y., Song, H. W., Shin, C. S., Ku, Y. G., Kang, N. R. and Heo, B. G. 2016. Mineral composition and physiological activities of methanol extract from the seeds of Persicaria tinctoria. Kor. J. Plant Res. 29, 32-38. https://doi.org/10.7732/kjpr.2016.29.1.032
  27. Perron, N. R. and Brumaghim, J. L. 2009. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 53, 75-100. https://doi.org/10.1007/s12013-009-9043-x
  28. Probst, Y., Guan, V. and Kent, K. 2018. A systematic review of food composition tools used for determining dietary polyphenol intake in estimated intake studies. Food Chem. 238, 146-152. https://doi.org/10.1016/j.foodchem.2016.11.010
  29. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  30. Ruxton, C. H., Reed, S. C., Simpson, M. J. and Millington, K. J. 2004. The healyh benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J. Hum. Nutr. Diet. 17, 449-459. https://doi.org/10.1111/j.1365-277X.2004.00552.x
  31. Slinkard, K. and Singleton, V. L. 1997. Total phenol analyses: automation and comparison with manual methods. Am. J. Enol. Viticult. 28, 49-55.
  32. Thanan, R., Oikawa, S., Hiraku, Y., Ohnishi, S., Ma, N., Pinlaor, S., Yongvanit, P., Kawanishi, S. and Murata, M. 2014. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 16, 193-217. https://doi.org/10.3390/ijms16010193
  33. Thannickal, V. J. and Fanburg, B. L. 2000. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279, 1005-1029. https://doi.org/10.1152/ajplung.2000.279.6.L1005
  34. Varro, E. T., Lynn, R. B. and James, E. R. 1988. Pharmacognosy 9 th edition, Lea and Feberger, Philadelphia, USA, p 471
  35. Wink, D. A., Hines, H. B., Cheng, R. Y., Switzer, C. H., Flores-Santana, W., Vitek, M. P., Ridnour, L. A. and Colton, C. A. 2011. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol. 89, 873-891. https://doi.org/10.1189/jlb.1010550
  36. Yildirim, A., Mavi, A. and Kara, A. A. 2001. Determination of antioxidant and antimicrobial activities of Rumex of aerobic life. Biochem. Symp. 61, 1-34.