DOI QR코드

DOI QR Code

Genomic Features and Lytic Activity of the Bacteriophage PPPL-1 Effective against Pseudomonas syringae pv. actinidiae, a Cause of Bacterial Canker in Kiwifruit

  • Park, JungKum (Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University) ;
  • Lim, Jeong-A (Research Group of Food Safety, Korea Food Research Institute) ;
  • Yu, Ji-Gang (Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University) ;
  • Oh, Chang-Sik (Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University)
  • 투고 : 2017.07.02
  • 심사 : 2018.07.20
  • 발행 : 2018.09.28

초록

Bacterial canker in kiwifruit is caused by Pseudomonas syringae pv. actinidiae (Psa). In this study, the bacteriophage PPPL-1 effective against Psa was characterized. Belonging to the Podoviridae family, PPPL-1 was effective against most Psa strains as well as most Pseudomonas syringae pathovars. PPPL-1 carries a 41,149-bp genome with 49 protein coding sequences and is homologous to the previously reported phiPSA2 bacteriophage. The lytic activity of PPPL-1 was stable up to $40^{\circ}C$, within a range of pH 3-11 and under 365 nm UV light. These results indicate that the bacteriophage PPPL-1 might be useful to control Psa in the kiwifruit field.

키워드

참고문헌

  1. Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M. 1989. Pseudomonas syringae pv. actinidiae pv. nov.: the casual bacterium of canker of kiwifruit in Japan. Ann. Phytopath. Soc. Japan. 55: 437-444. https://doi.org/10.3186/jjphytopath.55.437
  2. Fang Y, Zhu X, Wang Y. 1990. Preliminary studies on kiwifruit diseases in Hunan Province. Sichuan Fruit Sci. Technol. 18: 28-29.
  3. Koh YJ, Chung HJ, Cha BJ, Lee DH. 1994. Outbreak and spread of bacterial canker in kiwifruit. Plant Pathol. J. 10: 68-72.
  4. Scortichini M. 1994. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathol. 43: 1035-1038. https://doi.org/10.1111/j.1365-3059.1994.tb01654.x
  5. Everett KR, Taylor RK, Romberg MK, Rees-George J, Fullerton RA, Vanneste JL, et al. 2011. First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australas. Plant Dis. Notes 6: 67-71. https://doi.org/10.1007/s13314-011-0023-9
  6. Lee SL, Kim J, Kim GH, Choi ED, Koh YJ, Jae SJ. 2017. Biovars of Pseudomonas syringae pv. actinidiae strains, the causal agent of bacterial canker of kiwifruit, isolated in Korea. Res. Plant Dis. 23: 35-41. https://doi.org/10.5423/RPD.2017.23.1.35
  7. Kim GH, Jung JS, Koh YJ. 2017. Occurrence and epidemics of bacterial canker of kiwifruit in Korea. Plant Pathol. J. 33: 351. https://doi.org/10.5423/PPJ.RW.01.2017.0021
  8. Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS. 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hortic. Sci. 38: 275-282. https://doi.org/10.1080/01140671.2010.512624
  9. Mazzaglia A, Studholme DJ, Taratufolo MC, Cai R, Almeida NF, Goodman T, et al. 2012. Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS One 7: e36518. https://doi.org/10.1371/journal.pone.0036518
  10. Goren MG, Yosef I, Qimron U. 2015. Programming bacteriophages by swapping their specificity determinants. Trends Microbiol. 23: 744-746. https://doi.org/10.1016/j.tim.2015.10.006
  11. Maniloff J, Ackermann HW. 1998. Taxonomy of bacterial viruses: establishment of tailed virus genera and the other Caudovirales. Arch. Virol. 143: 2051-2063. https://doi.org/10.1007/s007050050442
  12. Frampton RA, Taylor C, Moreno AVH, Visnovsky SB, Petty NK, Pitman AR, et al. 2014. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl. Environ. Microbiol. 80: 2216-2228. https://doi.org/10.1128/AEM.00062-14
  13. Di Lallo G, Evangelisti M, Mancuso F, Ferrante P, Marcelletti S, Tinari A, et al. 2014. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. J. Basic Microbiol. 54: 1210-1221. https://doi.org/10.1002/jobm.201300951
  14. Kovalyova IV, Kropinski AM. 2003. The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas putida-evidence for close relationship to the T7 group. Virol. 311: 305-315. https://doi.org/10.1016/S0042-6822(03)00124-7
  15. Sillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J. 2004. Pseudomonas fluorescens infection by bacteriophage ${\Phi}$S1: the influence of temperature, host growth phase and media. FEMS Microbiol. Lett. 241: 13-20. https://doi.org/10.1016/j.femsle.2004.06.058
  16. Sillankorva S, Kluskens LD, Lingohr EJ, Kropinski AM, Neubauer P, Azeredo J. 2011. Complete genome sequence of the lytic Pseudomonas fluorescens phage ${\phi}$IBB-PF7A. Virol. J. 8: 142. https://doi.org/10.1186/1743-422X-8-142
  17. Yu JG, Lim JA, Song YR, Heu SG, Kim GH, Koh YJ, et al. 2016. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. J. Microbiol. Biotechnol. 26: 385-393. https://doi.org/10.4014/jmb.1509.09012
  18. Kim MS, Ryu SR. 2011. Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar Typhimurium and Escherichia coli. Appl. Environ. Microbiol. 77: 2042-2050. https://doi.org/10.1128/AEM.02504-10
  19. Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. 2017. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9: 50. https://doi.org/10.3390/v9030050
  20. Silva JB, Storms Z, Sauvageau D. 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363: fnw002. https://doi.org/10.1093/femsle/fnw002