References
- Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M. 1989. Pseudomonas syringae pv. actinidiae pv. nov.: the casual bacterium of canker of kiwifruit in Japan. Ann. Phytopath. Soc. Japan. 55: 437-444. https://doi.org/10.3186/jjphytopath.55.437
- Fang Y, Zhu X, Wang Y. 1990. Preliminary studies on kiwifruit diseases in Hunan Province. Sichuan Fruit Sci. Technol. 18: 28-29.
- Koh YJ, Chung HJ, Cha BJ, Lee DH. 1994. Outbreak and spread of bacterial canker in kiwifruit. Plant Pathol. J. 10: 68-72.
- Scortichini M. 1994. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathol. 43: 1035-1038. https://doi.org/10.1111/j.1365-3059.1994.tb01654.x
- Everett KR, Taylor RK, Romberg MK, Rees-George J, Fullerton RA, Vanneste JL, et al. 2011. First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australas. Plant Dis. Notes 6: 67-71. https://doi.org/10.1007/s13314-011-0023-9
- Lee SL, Kim J, Kim GH, Choi ED, Koh YJ, Jae SJ. 2017. Biovars of Pseudomonas syringae pv. actinidiae strains, the causal agent of bacterial canker of kiwifruit, isolated in Korea. Res. Plant Dis. 23: 35-41. https://doi.org/10.5423/RPD.2017.23.1.35
- Kim GH, Jung JS, Koh YJ. 2017. Occurrence and epidemics of bacterial canker of kiwifruit in Korea. Plant Pathol. J. 33: 351. https://doi.org/10.5423/PPJ.RW.01.2017.0021
- Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS. 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hortic. Sci. 38: 275-282. https://doi.org/10.1080/01140671.2010.512624
- Mazzaglia A, Studholme DJ, Taratufolo MC, Cai R, Almeida NF, Goodman T, et al. 2012. Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS One 7: e36518. https://doi.org/10.1371/journal.pone.0036518
- Goren MG, Yosef I, Qimron U. 2015. Programming bacteriophages by swapping their specificity determinants. Trends Microbiol. 23: 744-746. https://doi.org/10.1016/j.tim.2015.10.006
- Maniloff J, Ackermann HW. 1998. Taxonomy of bacterial viruses: establishment of tailed virus genera and the other Caudovirales. Arch. Virol. 143: 2051-2063. https://doi.org/10.1007/s007050050442
- Frampton RA, Taylor C, Moreno AVH, Visnovsky SB, Petty NK, Pitman AR, et al. 2014. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl. Environ. Microbiol. 80: 2216-2228. https://doi.org/10.1128/AEM.00062-14
- Di Lallo G, Evangelisti M, Mancuso F, Ferrante P, Marcelletti S, Tinari A, et al. 2014. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. J. Basic Microbiol. 54: 1210-1221. https://doi.org/10.1002/jobm.201300951
- Kovalyova IV, Kropinski AM. 2003. The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas putida-evidence for close relationship to the T7 group. Virol. 311: 305-315. https://doi.org/10.1016/S0042-6822(03)00124-7
-
Sillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J. 2004. Pseudomonas fluorescens infection by bacteriophage
${\Phi}$ S1: the influence of temperature, host growth phase and media. FEMS Microbiol. Lett. 241: 13-20. https://doi.org/10.1016/j.femsle.2004.06.058 -
Sillankorva S, Kluskens LD, Lingohr EJ, Kropinski AM, Neubauer P, Azeredo J. 2011. Complete genome sequence of the lytic Pseudomonas fluorescens phage
${\phi}$ IBB-PF7A. Virol. J. 8: 142. https://doi.org/10.1186/1743-422X-8-142 - Yu JG, Lim JA, Song YR, Heu SG, Kim GH, Koh YJ, et al. 2016. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. J. Microbiol. Biotechnol. 26: 385-393. https://doi.org/10.4014/jmb.1509.09012
- Kim MS, Ryu SR. 2011. Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar Typhimurium and Escherichia coli. Appl. Environ. Microbiol. 77: 2042-2050. https://doi.org/10.1128/AEM.02504-10
- Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. 2017. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9: 50. https://doi.org/10.3390/v9030050
- Silva JB, Storms Z, Sauvageau D. 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363: fnw002. https://doi.org/10.1093/femsle/fnw002