DOI QR코드

DOI QR Code

Improvement of Enzymatic Stability and Catalytic Efficiency of Recombinant Fusariumoxysporum Trypsin with Different N-Terminal Residues Produced by Pichiapastoris

  • Yang, Ning (School of Life Sciences, Lanzhou University) ;
  • Ling, Zhenmin (School of Life Sciences, Lanzhou University) ;
  • Peng, Liang (School of Life Sciences, Lanzhou University) ;
  • Liu, Yanlai (School of Life Sciences, Lanzhou University) ;
  • Liu, Pu (School of Life Sciences, Lanzhou University) ;
  • Zhang, Kai (School of Life Sciences, Lanzhou University) ;
  • Aman, Aman (School of Life Sciences, Lanzhou University) ;
  • Shi, Juanjuan (School of Life Sciences, Lanzhou University) ;
  • Li, Xiangkai (School of Life Sciences, Lanzhou University)
  • Received : 2018.04.16
  • Accepted : 2018.07.04
  • Published : 2018.09.28

Abstract

Fusarium oxysporum trypsin (FOT) is a fungal serine protease similar to mammal trypsin. The FOT could be successfully expressed in Pichiapastoris by engineering the natural propeptide APQEIPN. In this study, we constructed two recombinant enzymes with engineered amino acid sequences added to the N-terminus of FOT and expressed in P. pastoris. The N-terminal residues had various effects on the structural and functional properties of trypsin. The FOT, and the recombinants TE (with peptide YVEF) and TS (with peptide YV) displayed the same optimum temperature ($40^{\circ}C$) and pH (8.0). However, the combinants TE and TS showed significantly increased thermal stability at $40^{\circ}C$ and $50^{\circ}C$. Moreover, the combinants TE and TS also showed enhanced tolerance of alkaline pH conditions. Compared with those of wild-type FOT, the intramolecular hydrogen bonds and the cation ${\pi}$-interactions of the recombinants TE and TS were significantly increased. The recombinants TE and TS also had significantly increased catalytic efficiencies (referring to the specificity constant, $k_{cat}/K_m$), 1.75-fold and 1.23-fold than wild-type FOT. In silico modeling analysis uncovered that the introduction of the peptides YVEF and YV resulted in shorter distances between the substrate binding pocket (D174, G198, and G208) and catalytic triad (His42, Asp102, and Ser180), which would improve the electron transfer rate and catalytic efficiency. In addition, N-terminal residues modification described here may be a useful approach for improving the catalytic efficiencies and characteristics of other target enzymes.

Keywords

References

  1. Walsh K. 1970. Trypsinogens and trypsins of various species. Methods Enzymol. 19: 41-63.
  2. Ling Z, Ma T, Li J, Du G, Kang Z, Chen J. 2012. Functional expression of trypsin from Streptomyces griseus by Pichia pastoris. J. Ind. Microbiol. Biotechnol. 39: 1651-1662. https://doi.org/10.1007/s10295-012-1172-3
  3. Muhlia-Almazan A, Sanchez-Paz A, Garcia-Carreno FL. 2008. Invertebrate trypsins: a review. J. Comp. Physiol. 178: 655-672. https://doi.org/10.1007/s00360-008-0263-y
  4. Klomklao S. 2008. Digestive proteinases from marine organisms and their applications. Songklanakarin J. Sci. Technol. 30: 37-46.
  5. Zugno LA. 1992. The effect of trypsin on soaking of salt cured hides. J. Am. Leather Chem. Assoc. 78: 207-220.
  6. Torrissen K, Shearer K. 1992. Protein digestion, growth and food conversion in Atlantic salmon and Arctic charr with different trypsin-like isozyme patterns. J. Fish Biol. 41: 409-415. https://doi.org/10.1111/j.1095-8649.1992.tb02669.x
  7. Ling Z, Kang Z, Liu Y, Liu S, Chen J, Du G. 2014. Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide. World J. Microbiol. Biotechnol. 30: 1819-1827. https://doi.org/10.1007/s11274-014-1608-1
  8. Ling Z, Liu Y, Teng S, Kang Z, Zhang J, Chen J, et al. 2013. Rational design of a novel propeptide for improving active production of Streptomyces griseus trypsin in Pichia pastoris. Appl. Environ. Microbiol. 79: 3851-3855. https://doi.org/10.1128/AEM.00376-13
  9. Zhang Y, Huang H, Yao X, Du G, Chen J, Kang Z. 2018. High-yield secretory production of stable, active trypsin through engineering of the N-terminal peptide and self-degradation sites in Pichia pastoris. Bioresour. Technol. 247: 81-87. https://doi.org/10.1016/j.biortech.2017.08.006
  10. Shu M, Shen W, Wang X, Wang F, Ma L, Zhai C. 2015. Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115. Protein Exp. Purif. 114: 149-155. https://doi.org/10.1016/j.pep.2015.06.014
  11. Jonsdottir G, Bjarnason JB, Gudmundsdottir A. 2004. Recombinant cold-adapted trypsin I from Atlantic cod-expression, purification, and identification. Protein Exp. Purif. 33: 110-122. https://doi.org/10.1016/j.pep.2003.09.012
  12. Palsdottir HM, Gudmundsdottir A. 2007. Expression and purification of a cold-adapted group III trypsin in Escherichia coli. Protein Exp. Purif. 51: 243-252. https://doi.org/10.1016/j.pep.2006.06.008
  13. Szilagyi L, Kenesi E, Katona G, Kaslik G, Juhasz G, Graf L. 2001. Comparative in vitro studies on native and recombinant human cationic trypsins cathepsin B is a possible pathological activator of trypsinogen in pancreatitis. J. Biol. Chem. 276: 24574-24580. https://doi.org/10.1074/jbc.M011374200
  14. Chen J-M, Ferec C. 2000. Genes, cloned cDNAs, and proteins of human trypsinogens and pancreatitis-associated cationic trypsinogen mutations. Pancreas 21: 57-62. https://doi.org/10.1097/00006676-200007000-00052
  15. Hohenblum H, Vorauer-Uhl K, Katinger H, Mattanovich D. 2004. Bacterial expression and refolding of human trypsinogen. J. Biotechnol. 109: 3-11. https://doi.org/10.1016/j.jbiotec.2003.10.022
  16. Mosbah H, Horchani H, Sayari A, Gargouri Y. 2010. The insertion of (LK) residues at the N-terminus of Staphylococcus xylosus lipase affects its catalytic properties and its enantioselectivity. Process Biochem. 45: 777-785. https://doi.org/10.1016/j.procbio.2010.01.020
  17. Kim J-H, Hong S-K. 2008. Overproduction of bacterial trypsin in streptomyces-optimization for streptomyces griseus trypsin production by recombinant streptomyces. Microbiol. Biotechnol. Lett. 36: 28-33.
  18. Barata RA, Andrade MH, Rodrigues RD, Castro IM. 2002. Purification and characterization of an extracellular trypsin-like protease of Fusarium oxysporum var. lini. J. Biosci. Bioeng. 94: 304-308. https://doi.org/10.1016/S1389-1723(02)80168-2
  19. Rypniewski WR, Hastrup S, Betzel C, Dauter M, Dauter Z, Papendorf G, et al. 1993. The sequence and X-ray structure of the trypsin from Fusarium oxysporum. Protein Eng. 6: 341-348. https://doi.org/10.1093/protein/6.4.341
  20. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26: 1781-1802. https://doi.org/10.1002/jcc.20289
  21. Justin PG, Dennis AD. 1999. Cation-${\pi}$ interactions in structural biology. Chem. Biochem. 96: 9459-9464.
  22. Robert MS, Anthony AK, John LC. 1977. Mechanism of zymogen activation. 6: 177-193. https://doi.org/10.1146/annurev.bb.06.060177.001141
  23. Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, Shirley BA, et al. 2011. Contribution of hydrophobic interactions to protein stability. J. Mol. Biol. 408: 514-528. https://doi.org/10.1016/j.jmb.2011.02.053
  24. Purmonen M, Valjakka J, Takkinen K, Laitinen T, Rouvinen J. 2007. Molecular dynamics studies on the thermostability of family 11 xylanases. Protein Eng. Des. Sel. 20: 551-559. https://doi.org/10.1093/protein/gzm056
  25. Yin J, Bowen D, Southerland WM. 2006. Barnase thermal titration via molecular dynamics simulations: detection of early denaturation sites. J. Mol. Graph. Model. 24: 233-243. https://doi.org/10.1016/j.jmgm.2005.08.011
  26. Priya Doss CG, Nagasundaram N, Chakraborty C, Chen L Zhu H. 2013. Extrapolating the effect of deleterious nsSNPs in the binding adaptability of flavopiridol with CDK7 protein: a molecular dynamics approach. Hum. Genomics 7: 1-15. https://doi.org/10.1186/1479-7364-7-1
  27. Horchani H, Mosbah H, Salem NB, Gargouri Y, Sayari A. 2009. Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain. J. Mol. Catal. B Enzym 56: 237-245. https://doi.org/10.1016/j.molcatb.2008.05.011
  28. Ouertani S, Frikha F, Horchani H, Ben Salem N, Gargouri Y, Sayari A. 2012. The insertion of four residues Isoleucines at the N-terminus of Staphylococcus simulans lipase affects its catalytic and biochemical properties. J. Mol. Catal. B Enzym 82: 1-7. https://doi.org/10.1016/j.molcatb.2012.05.015
  29. Gromiha MM, Thomas S, Santhosh C. 2002. Role of cation-${\pi}$ interactions to the stability of thermophilic proteins. Prep. Biochem. Biotechnol. 32: 355-362. https://doi.org/10.1081/PB-120015459
  30. Kraut J. 1977. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46: 331-358. https://doi.org/10.1146/annurev.bi.46.070177.001555
  31. Page MJ, Wong SL, Hewitt J, Strynadka NCJ, MacGillivray RTA. 2003. Engineering the primary substrate specificity of Streptomyces griseus trypsin. Biochemistry 42: 9060-9066. https://doi.org/10.1021/bi0344230
  32. Nick Pace C, Scholtz JM, Grimsley GR. 2014. Forces stabilizing proteins. FEBS Lett. 588: 2177-2184. https://doi.org/10.1016/j.febslet.2014.05.006
  33. Zhongyuan L, Xianli X, Heng Z, Peilong Y, Huiying L, Junqi Z, et al. 2014. A C-terminal proline-rich sequence simultaneously broadens the optimal temperature and pH ranges and improves the catalytic efficiency of glycosyl hydrolase family 10 ruminal xylanases.
  34. Haiquan Y, Xinyao L, Long L, Jianghua L, Hyun-dong S, Rachel RC, et al. 2013. Fusion of an oligopeptide to the N terminus of an alkaline amylase from alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation. AEM 79: 3049-3058. https://doi.org/10.1128/AEM.03785-12