DOI QR코드

DOI QR Code

Lactobacillus johnsonii CJLJ103 Attenuates Scopolamine-Induced Memory Impairment in Mice by Increasing BDNF Expression and Inhibiting NF-κB Activation

  • Lee, Hae-Ji (Neutrobiota Research Center, College of Pharmacy, Kyung Hee University) ;
  • Lim, Su-Min (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Kim, Dong-Hyun (Neutrobiota Research Center, College of Pharmacy, Kyung Hee University)
  • Received : 2018.05.17
  • Accepted : 2018.07.23
  • Published : 2018.09.28

Abstract

In the present study, we examined whether Lactobacillus johnsonii CJLJ103 (LJ) could alleviate cholinergic memory impairment in mice. Oral administration of LJ alleviated scopolamine-induced memory impairment in passive avoidance and Y-maze tasks. Furthermore, LJ treatment increased scopolamine-suppressed BDNF expression and CREB phosphorylation in the hippocampi of the brain, as well as suppressed $TNF-{\alpha}$ expression and $NF-{\kappa}B$ activation. LJ also increased BDNF expression in corticosterone-stimulated SH-SY5Y cells and inhibited $NF-{\kappa}B$ activation in LPS-stimulated microglial BV2 cells. However, LJ did not inhibit acetylcholinesterase activity. These findings suggest that LJ, a member of human gut microbiota, may mitigate cholinergic memory impairment by increasing BDNF expression and inhibiting $NF-{\kappa}B$ activation.

Keywords

References

  1. Britton GB, Rao KS. 2011. Cognitive aging and early diagnosis challenges in Alzheimer's disease, J. Alzheimers Dis. 24 (Suppl 2): 153-159. https://doi.org/10.3233/JAD-2011-110239
  2. Araujo JA, Studzinski CM, Milgram NW. 2005. Further evidence for the cholinergic hypothesis of aging and dementia from the canine model of aging. Prog. Neuropsychopharmacol. Biol. Psychiatry 29: 411-422. https://doi.org/10.1016/j.pnpbp.2004.12.008
  3. Jung K, Lee B, Han SJ, Ryu JH, Kim DH. 2009. Mangiferin ameliorates scopolamine-induced learning deficits in mice. Biol. Pharm. Bull. 32: 242-246. https://doi.org/10.1248/bpb.32.242
  4. Jang YJ, Kim J, Shim J, Kim CY, Jang JH, Lee KW, Lee HJ. 2013. Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behav. Brain Res. 245: 113-119. https://doi.org/10.1016/j.bbr.2013.02.003
  5. Lu B, Nagappan G, Lu Y. 2014. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 220: 223-250.
  6. Owen RT. 2016. Memantine and donepezil: a fixed drug combination for the treatment of moderate to severe Alzheimer's dementia. Drugs Today (Barc) 52: 239-248.
  7. Gongadze N, Antelava N, Kezeli T, Okudjava M, Pachkoria K. 2008. The mechanisms of neurodegenerative processes and current pharmacotherapy of Alzheimer's disease. Georgian Med. News 155: 44-48.
  8. Reid G. 2016. Probiotics: definition, scope and mechanisms of action. Best Pract. Res. Clin. Gastroenterol. 30: 17-25. https://doi.org/10.1016/j.bpg.2015.12.001
  9. Kang HJ, Im SH. 2015. Probiotics as an immune modulator. J. Nutr. Sci. Vitaminol. 61 (Suppl): S103-5 https://doi.org/10.3177/jnsv.61.S103
  10. Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH. 2012. Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J. Appl. Microbiol. 113: 1498-1506. https://doi.org/10.1111/j.1365-2672.2012.05437.x
  11. He M, Shi B. 2017. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 7: 54 https://doi.org/10.1186/s13578-017-0183-1
  12. Lee HJ, Jeong JJ, Han MJ, Kim DH. 2018. Lactobacillus plantarum C29 alleviates TNBS-induced memory impairment in mice. J. Microbiol. Biotechnol. 2018.
  13. Jeong JJ, Woo JY, Kim KA, Han MJ, Kim DH. 2015. Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent memory impairment in Fischer 344 rats. Lett. Appl. Microbiol. 60: 307-314. https://doi.org/10.1111/lam.12393
  14. Lim SM, Jang HM, Jeong JJ, Han MJ, Kim DH. 2017. Lactobacillus johnsonii CJLJ103 attenuates colitis and memory impairment in mice by inhibiting gut microbiota lipopolysaccharide production and NF-${\kappa}B$ activation. J. Funct. Foods 34: 359-368. https://doi.org/10.1016/j.jff.2017.05.016
  15. Lee HJ, Lim SM, Ko DB, Jeong JJ, Hwang YH, Kim DH. 2017. Soyasapogenol B and genistein attenuate lipopolysaccharide-induced memory impairment in mice by the modulation of NF-${\kappa}B$-Mediated BDNF expression. J. Agric. Food Chem. 65: 6877-6885. https://doi.org/10.1021/acs.jafc.7b02569
  16. Tariot PN, Patel SV, Cox C, Henderson RE. 1996. Age-related decline in central cholinergic function demonstrated with scopolamine. Psychopharmacology 125: 50-56. https://doi.org/10.1007/BF02247392
  17. Kafitz KW, Rose CR, Thoenen H, Konnerth A. 1999. Neurotrophin-evoked rapid excitation through TrkB receptors Nature 401: 918-921. https://doi.org/10.1038/44847
  18. Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B. 1996. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus Nature 381: 706-709. https://doi.org/10.1038/381706a0
  19. Song JH, Yu JT, Tan L. 2015. Brain-derived neurotrophic gactor in Alzheimer's disease: risk, mechanisms, and therapy Mol. Neurobiol. 52: 1477-1493 https://doi.org/10.1007/s12035-014-8958-4
  20. Shi Z, Chen L, Li S, Chen S, Sun X, Sun L, et al. 2013. Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rats is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology (Berl) 230: 245-260. https://doi.org/10.1007/s00213-013-3149-y
  21. Grenham S, Clarke G, Cryan JF, Dinan TG. 2011. Brain-gut-microbe communication in health and disease. Front. Physiol. 2: 94.
  22. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. 2011. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141: 599-609. https://doi.org/10.1053/j.gastro.2011.04.052
  23. Xie G, Wang X, Liu P, Wei R, Chen W, Rajani C, et al. 2016. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7: 19355-19366. https://doi.org/10.18632/oncotarget.8466

Cited by

  1. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology vol.11, pp.None, 2020, https://doi.org/10.3389/fimmu.2020.604179
  2. Roles of Gut Microbiota in the Regulation of Hippocampal Plasticity, Inflammation, and Hippocampus-Dependent Behaviors vol.10, pp.None, 2021, https://doi.org/10.3389/fcimb.2020.611014
  3. Neuroprotective Effects of Heat-Killed Lactobacillus plantarum 200655 Isolated from Kimchi Against Oxidative Stress vol.13, pp.3, 2018, https://doi.org/10.1007/s12602-020-09740-w