References
- Britton GB, Rao KS. 2011. Cognitive aging and early diagnosis challenges in Alzheimer's disease, J. Alzheimers Dis. 24 (Suppl 2): 153-159. https://doi.org/10.3233/JAD-2011-110239
- Araujo JA, Studzinski CM, Milgram NW. 2005. Further evidence for the cholinergic hypothesis of aging and dementia from the canine model of aging. Prog. Neuropsychopharmacol. Biol. Psychiatry 29: 411-422. https://doi.org/10.1016/j.pnpbp.2004.12.008
- Jung K, Lee B, Han SJ, Ryu JH, Kim DH. 2009. Mangiferin ameliorates scopolamine-induced learning deficits in mice. Biol. Pharm. Bull. 32: 242-246. https://doi.org/10.1248/bpb.32.242
- Jang YJ, Kim J, Shim J, Kim CY, Jang JH, Lee KW, Lee HJ. 2013. Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behav. Brain Res. 245: 113-119. https://doi.org/10.1016/j.bbr.2013.02.003
- Lu B, Nagappan G, Lu Y. 2014. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 220: 223-250.
- Owen RT. 2016. Memantine and donepezil: a fixed drug combination for the treatment of moderate to severe Alzheimer's dementia. Drugs Today (Barc) 52: 239-248.
- Gongadze N, Antelava N, Kezeli T, Okudjava M, Pachkoria K. 2008. The mechanisms of neurodegenerative processes and current pharmacotherapy of Alzheimer's disease. Georgian Med. News 155: 44-48.
- Reid G. 2016. Probiotics: definition, scope and mechanisms of action. Best Pract. Res. Clin. Gastroenterol. 30: 17-25. https://doi.org/10.1016/j.bpg.2015.12.001
- Kang HJ, Im SH. 2015. Probiotics as an immune modulator. J. Nutr. Sci. Vitaminol. 61 (Suppl): S103-5 https://doi.org/10.3177/jnsv.61.S103
- Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH. 2012. Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J. Appl. Microbiol. 113: 1498-1506. https://doi.org/10.1111/j.1365-2672.2012.05437.x
- He M, Shi B. 2017. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 7: 54 https://doi.org/10.1186/s13578-017-0183-1
- Lee HJ, Jeong JJ, Han MJ, Kim DH. 2018. Lactobacillus plantarum C29 alleviates TNBS-induced memory impairment in mice. J. Microbiol. Biotechnol. 2018.
- Jeong JJ, Woo JY, Kim KA, Han MJ, Kim DH. 2015. Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent memory impairment in Fischer 344 rats. Lett. Appl. Microbiol. 60: 307-314. https://doi.org/10.1111/lam.12393
-
Lim SM, Jang HM, Jeong JJ, Han MJ, Kim DH. 2017. Lactobacillus johnsonii CJLJ103 attenuates colitis and memory impairment in mice by inhibiting gut microbiota lipopolysaccharide production and NF-
${\kappa}B$ activation. J. Funct. Foods 34: 359-368. https://doi.org/10.1016/j.jff.2017.05.016 -
Lee HJ, Lim SM, Ko DB, Jeong JJ, Hwang YH, Kim DH. 2017. Soyasapogenol B and genistein attenuate lipopolysaccharide-induced memory impairment in mice by the modulation of NF-
${\kappa}B$ -Mediated BDNF expression. J. Agric. Food Chem. 65: 6877-6885. https://doi.org/10.1021/acs.jafc.7b02569 - Tariot PN, Patel SV, Cox C, Henderson RE. 1996. Age-related decline in central cholinergic function demonstrated with scopolamine. Psychopharmacology 125: 50-56. https://doi.org/10.1007/BF02247392
- Kafitz KW, Rose CR, Thoenen H, Konnerth A. 1999. Neurotrophin-evoked rapid excitation through TrkB receptors Nature 401: 918-921. https://doi.org/10.1038/44847
- Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B. 1996. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus Nature 381: 706-709. https://doi.org/10.1038/381706a0
- Song JH, Yu JT, Tan L. 2015. Brain-derived neurotrophic gactor in Alzheimer's disease: risk, mechanisms, and therapy Mol. Neurobiol. 52: 1477-1493 https://doi.org/10.1007/s12035-014-8958-4
- Shi Z, Chen L, Li S, Chen S, Sun X, Sun L, et al. 2013. Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rats is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology (Berl) 230: 245-260. https://doi.org/10.1007/s00213-013-3149-y
- Grenham S, Clarke G, Cryan JF, Dinan TG. 2011. Brain-gut-microbe communication in health and disease. Front. Physiol. 2: 94.
- Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. 2011. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141: 599-609. https://doi.org/10.1053/j.gastro.2011.04.052
- Xie G, Wang X, Liu P, Wei R, Chen W, Rajani C, et al. 2016. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7: 19355-19366. https://doi.org/10.18632/oncotarget.8466
Cited by
- The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology vol.11, pp.None, 2020, https://doi.org/10.3389/fimmu.2020.604179
- Roles of Gut Microbiota in the Regulation of Hippocampal Plasticity, Inflammation, and Hippocampus-Dependent Behaviors vol.10, pp.None, 2021, https://doi.org/10.3389/fcimb.2020.611014
- Neuroprotective Effects of Heat-Killed Lactobacillus plantarum 200655 Isolated from Kimchi Against Oxidative Stress vol.13, pp.3, 2018, https://doi.org/10.1007/s12602-020-09740-w