DOI QR코드

DOI QR Code

Distinct Genetic Variation of Helicobacter pylori cagA, vacA, oipA, and sabA Genes in Thai and Korean Dyspeptic Patients

  • Boonyanugomol, Wongwarut (Department of Sciences and Liberal Arts, Mahidol University, Amnat Charoen Campus) ;
  • Kongkasame, Worrarat (Unit of Endoscopy Medicine, Supprasittiprasong Hospital) ;
  • Palittapongarnpim, Prasit (Department of Microbiology, Faculty of Science, Mahidol University) ;
  • Jung, Myunghwan (Department of Microbiology, Gyeongsang National Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Shin, Min-Kyoung (Department of Microbiology, Gyeongsang National Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Kang, Hyung-Lyun (Department of Microbiology, Gyeongsang National Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Baik, Seung-Chul (Department of Microbiology, Gyeongsang National Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Lee, Woo-Kon (Department of Microbiology, Gyeongsang National Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Cho, Myung-Je (Department of Microbiology, Gyeongsang National Institute of Health Sciences, Gyeongsang National University School of Medicine)
  • Received : 2018.02.06
  • Accepted : 2018.05.31
  • Published : 2018.09.28

Abstract

Differences in host ethnicities and geographical distributions may influence the genetic variation and pathogenesis of Helicobacter pylori strains, particularly with respect to those with a high risk of gastric cancer and in Asian Enigma regions. We simultaneously identified H. pylori virulence-associated genes involved in inflammation and cell damage in Thai and Korean dyspeptic patients. The virulence-associated gene cagA, cagA genotypes (East Asian and Western type cagA), vacA genotypes (s- and m-), oipA, and sabA were detected in Thai and Korean dyspeptic patients by polymerase chain reaction (PCR), real-time PCR, and DNA sequence analysis. Comparisons between the two regions showed that cagA, East Asian type cagA, and vacA s1/m1 in Korean dyspeptic patients occurred at rates of 100%, 86.67%, and 88.89%, respectively (p < 0.05). The oipA- and sabA-positive samples were significantly more predominant in the Korean population (95.56%, 91.11%) than in the Thai population (32%, 34%). DNA sequence analysis revealed differences in the patterns of cytosine-thymine dinucleotide repeats of oipA and sabA among the two populations of dyspeptic patients. Our results indicate that the H. pylori strains detected in the two regions were divergent, and strains colonizing the Korean dyspeptic patients may be more virulent than those in the Thai population. Our data may help explain H. pylori pathogenesis in Asian Enigma areas with a low gastric cancer incidence. However, other factors involving H. pylori infection in these two regions should be further analyzed.

Keywords

References

  1. Peek RM, Jr., Blaser MJ. 2002. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer. 2: 28-37. https://doi.org/10.1038/nrc703
  2. International Agency for Research on Cancer (IARC). 1994. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum. 61: 1-241.
  3. Miwa H, Go MF, Sato N. 2002. H. pylori and gastric cancer: the Asian enigma. Am. J. Gastroenterol. 97: 1106-1112. https://doi.org/10.1111/j.1572-0241.2002.05663.x
  4. Uchida T, Miftahussurur M, Pittayanon R, Vilaichone RK, Wisedopas N, Ratanachu-Ek T, et al. 2015. Helicobacter pylori infection in Thailand: A nationwide study of the CagA phenotype. PLoS One. 10: e0136775. https://doi.org/10.1371/journal.pone.0136775
  5. Eusebi LH, Zagari RM, Bazzoli F. 2014. Epidemiology of Helicobacter pylori infection. Helicobacter. 19: 1-5.
  6. Shin A, Shin HR, Kang D, Park SK, Kim CS, Yoo KY. 2005. A nested case-control study of the association of Helicobacter pylori infection with gastric adenocarcinoma in Korea. Br. J. Cancer. 92: 1273-1275. https://doi.org/10.1038/sj.bjc.6602467
  7. Rahman R, Asombang AW, Ibdah JA. 2014. Characteristics of gastric cancer in Asia. World J. Gastroenterol. 20: 4483-4490. https://doi.org/10.3748/wjg.v20.i16.4483
  8. Zaidi SF. 2016. Helicobacter pylori associated Asian enigma: Does diet deserve distinction? World J. Gastrointest. Oncol. 8: 341-350. https://doi.org/10.4251/wjgo.v8.i4.341
  9. Figura N, Guglielmetti P, Rossolini A, Barberi A, Cusi G, Musmanno RA, et al. 1989. Cytotoxin production by Campylobacter pylori strains isolated from patients with peptic ulcers and from patients with chronic gastritis only. J. Clin. Microbiol. 27: 225-226.
  10. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, et al. 1995. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55: 2111-2115.
  11. Segal ED, Falkow S, Tompkins LS. 1996. Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc. Natl. Acad. Sci. USA 93: 1259-1264. https://doi.org/10.1073/pnas.93.3.1259
  12. Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T, et al. 2002. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl. Acad. Sci. USA 99: 14428-14433. https://doi.org/10.1073/pnas.222375399
  13. Argent RH, Hale JL, El-Omar EM, Atherton JC. 2008. Differences in Helicobacter pylori CagA tyrosine phosphorylation motif patterns between western and East Asian strains, and influences on interleukin-8 secretion. J. Med. Microbiol. 57: 1062-1067. https://doi.org/10.1099/jmm.0.2008/001818-0
  14. Cover TL. 1996. The vacuolating cytotoxin of Helicobacter pylori. Mol. Microbiol. 20: 241-246. https://doi.org/10.1111/j.1365-2958.1996.tb02612.x
  15. Atherton JC, Cao P, Peek RM, Jr., Tummuru MK, Blaser MJ, Cover TL. 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270: 17771- 17777. https://doi.org/10.1074/jbc.270.30.17771
  16. Matsuo Y, Kido Y, Yamaoka Y. 2017. Helicobacter pylori outer membrane protein-related pathogenesis. Toxins (Basel). 9.
  17. Yamaoka Y, Kwon DH, Graham DY. 2000. A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 97: 7533-7538. https://doi.org/10.1073/pnas.130079797
  18. Kauser F, Hussain MA, Ahmed I, Ahmad N, Habeeb A, Khan AA, et al. 2005. Comparing genomes of Helicobacter pylori strains from the high-altitude desert of Ladakh, India. J. Clin. Microbiol. 43: 1538-1545. https://doi.org/10.1128/JCM.43.4.1538-1545.2005
  19. Lehours P, Menard A, Dupouy S, Bergey B, Richy F, Zerbib F, et al. 2004. Evaluation of the association of nine Helicobacter pylori virulence factors with strains involved in low-grade gastric mucosaassociated lymphoid tissue lymphoma. Infect. Immun. 72: 880- 888. https://doi.org/10.1128/IAI.72.2.880-888.2004
  20. Qiao W, Hu JL, Xiao B, Wu KC, Peng DR, Atherton JC, et al. 2003. cagA and vacA genotype of Helicobacter pylori associated with gastric diseases in Xi'an area. World J. Gastroenterol. 9: 1762-1766. https://doi.org/10.3748/wjg.v9.i8.1762
  21. Yamazaki S, Kato S, Matsukura N, Ohtani M, Ito Y, Suto H, et al. 2005. Identification of Helicobacter pylori and the cagA genotype in gastric biopsies using highly sensitive real-time PCR as a new diagnostic tool. FEMS Immunol. Med. Microbiol. 44: 261-268. https://doi.org/10.1016/j.femsim.2004.12.011
  22. Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BE, Reece CA, et al. 1998. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol. 28: 37-53.
  23. Gramley WA, Asghar A, Frierson HF, Jr., Powell SM. 1999. Detection of Helicobacter pylori DNA in fecal samples from infected individuals. J. Clin. Microbiol. 37: 2236-2240.
  24. Tantrachoti P WD, Soontornmanokul T, Rerknimitr R, Gonlachanvit S. 2013. Epidemiological study of Helicobacter pylori infection and Endoscopic Findings in Thailand. Thai J. Gastroenterol. 14: 110-116.
  25. Malaty HM, Kim JG, El-Zimaity HM, Graham DY. 1997. High prevalence of duodenal ulcer and gastric cancer in dyspeptic patients in Korea. Scand J. Gastroenterol. 32: 751-754. https://doi.org/10.3109/00365529708996529
  26. Fischer W. 2011. Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 278: 1203-1212. https://doi.org/10.1111/j.1742-4658.2011.08036.x
  27. Ekstrom AM, Held M, Hansson LE, Engstrand L, Nyren O. 2001. Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology 121: 784- 791. https://doi.org/10.1053/gast.2001.27999
  28. Matsunari O, Shiota S, Suzuki R, Watada M, Kinjo N, Murakami K, et al. 2012. Association between Helicobacter pylori virulence factors and gastroduodenal diseases in Okinawa, Japan. J. Clin. Microbiol. 50: 876-883. https://doi.org/10.1128/JCM.05562-11
  29. Azuma T. 2004. Helicobacter pylori CagA protein variation associated with gastric cancer in Asia. J. Gastroenterol. 39: 97-103. https://doi.org/10.1007/s00535-003-1279-4
  30. Hirai I, Sasaki T, Kimoto A, Fujimoto S, Moriyama T, Yamamoto Y. 2009. Assessment of East Asian-type cagA-positive Helicobacter pylori using stool specimens from asymptomatic healthy Japanese individuals. J. Med. Microbiol. 58: 1149-1153. https://doi.org/10.1099/jmm.0.010934-0
  31. Cover TL, Tummuru MK, Cao P, Thompson SA, Blaser MJ. 1994. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem. 269: 10566- 10573.
  32. Pagliaccia C, de Bernard M, Lupetti P, Ji X, Burroni D, Cover TL, et al. 1998. The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proc. Natl. Acad. Sci. USA 95: 10212-10217. https://doi.org/10.1073/pnas.95.17.10212
  33. Gangwer KA, Mushrush DJ, Stauff DL, Spiller B, McClain MS, Cover TL, et al. 2007. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc. Natl. Acad. Sci. USA 104: 16293-16298. https://doi.org/10.1073/pnas.0707447104
  34. Yahiro K, Hirayama T, Moss J, Noda M. 2016. New insights into VacA intoxication mediated through its cell surface receptors. Toxins (Basel). 8.
  35. Yamaoka Y, Orito E, Mizokami M, Gutierrez O, Saitou N, Kodama T, et al. 2002. Helicobacter pylori in North and South America before Columbus. FEBS Lett. 517: 180-184. https://doi.org/10.1016/S0014-5793(02)02617-0
  36. Tabassam FH, Graham DY, Yamaoka Y. 2012. Helicobacter pyloriassociated regulation of forkhead transcription factors FoxO1/3a in human gastric cells. Helicobacter 17: 193-202. https://doi.org/10.1111/j.1523-5378.2012.00939.x
  37. Liu J, He C, Chen M, Wang Z, Xing C, Yuan Y. 2013. Association of presence/absence and on/off patterns of Helicobacter pylori oipA gene with peptic ulcer disease and gastric cancer risks: a metaanalysis. BMC Infect. Dis. 13: 555. https://doi.org/10.1186/1471-2334-13-555
  38. Yamaoka Y, Kikuchi S, el-Zimaity HM, Gutierrez O, Osato MS, Graham DY. 2002. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 123: 414-424. https://doi.org/10.1053/gast.2002.34781
  39. Teymournejad O, Mobarez AM, Hassan ZM, Noori S, Moazzeni SM, Khoramabadi N. 2013. Cloning, expression, purification and toxicity evaluation of Helicobacter pylori outer inflammatory protein A. Indian J. Microbiol. 53: 391-394. https://doi.org/10.1007/s12088-013-0383-2
  40. Posselt G, Backert S, Wessler S. 2013. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun. Signal. 11: 77. https://doi.org/10.1186/1478-811X-11-77
  41. Mahdavi J, Sonden B, Hurtig M, Olfat FO, Forsberg L, Roche N, et al. 2002. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297: 573-578. https://doi.org/10.1126/science.1069076
  42. Marcos NT, Magalhaes A, Ferreira B, Oliveira MJ, Carvalho AS, Mendes N, et al. 2008. Helicobacter pylori induces beta3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl-Lewis x. J. Clin. Invest. 118: 2325-2336.
  43. Unemo M, Aspholm-Hurtig M, Ilver D, Bergstrom J, Boren T, Danielsson D, et al. 2005. The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J. Biol. Chem. 280: 15390-15397. https://doi.org/10.1074/jbc.M412725200
  44. Saunders NJ, Boonmee P, Peden JF, Jarvis SA. 2005. Inter-species horizontal transfer resulting in core-genome and niche-adaptive variation within Helicobacter pylori. BMC Genomics. 6: 9. https://doi.org/10.1186/1471-2164-6-9