DOI QR코드

DOI QR Code

유용한 바실러스의 토양 접종에 따른 토착 세균 군집의 변화

Changes in Resident Soil Bacterial Communities in Response to Inoculation of Soil with Beneficial Bacillus spp.

  • 김이슬 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김상윤 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 안주희 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 상미경 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 송재경 (농촌진흥청 국립농업과학원 농업미생물과)
  • Kim, Yiseul (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Sang Yoon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • An, Ju Hee (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Sang, Mee Kyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA)
  • 투고 : 2018.08.01
  • 심사 : 2018.08.31
  • 발행 : 2018.09.28

초록

유용미생물은 임업과 축산 분야에 활용될 뿐만 아니라 병해충 방제와 작물 생육 증진 등의 용도로 농업에서 널리 이용되고 있다. 하지만 유용미생물의 토양에서의 생존율과 정착율에 대한 연구는 미미한 형편이다. 본 연구에서는 마이크로코즘을 이용해 바실러스 3 균주를 토양에 처리한 후, 이들의 토양 내 생존능을 정량 PCR을 이용하여 13일 동안 정량적으로 분석하였다. 또한 Illumina MiSeq 플랫폼을 이용하여 바실러스 3 균주 처리구와 대조구의 토양미생물 군집 분포를 비교 및 분석하였다. 바실러스 3 균주의 처리 직후 토양 내 밀도는 건조토양 1 그람당 평균 $4.4{\times}10^6$ 유전자수로 대조구에 비해 1,000배 이상 높았다. 바실러스 균주의 토양 내 밀도는 처리 후 약 일주일 간 유지되었고 그 후부터는 유의성 있게 감소하였지만 여전히 대조구보다 100배 이상 높았다. 바실러스 균주 처리 후 토양 내 미생물 군집 구조 분석 결과, 대조구와 처리구 모두 Acidobacteria 문($26.3{\pm}0.9%$), Proteobacteria 문($24.2{\pm}0.5%$), Chloroflexi 문($11.1{\pm}0.4%$), Actinobacteria 문($9.7{\pm}2.5%$)에 속하는 세균이 우점하였다. 대조구 대비 처리구에서 Actinobacteria 문의 비율은 뚜렷하게 감소하였지만 Bacteroidetes 문과 Firmicutes 문의 비율은 증가하는 경향이었다. 속 수준에서 바실러스 3 균주를 처리함에 따라 일부 세균 군집의 종 풍부도를 변화되었고, 결국 전체 토착 미생물 군집 구조가 변화되었음을 확인할 수 있었다. 본 연구에서 수행한 유용한 바실러스의 토양 접종 후 이들의 토양 내 생존능 분석 및 토착 세균 군집의 변화는 유용미생물을 생물적 제제로 시설재배지에 사용할 때 중요한 정보를 제공할 것으로 판단된다.

Beneficial microorganisms are widely used in the forestry, livestock, and, in particular, agricultural sectors to control soilborne diseases and promote plant growth. However, the industrial utilization of these microorganisms is very limited, mainly due to uncertainty concerning their ability to colonize and persist in soil. In this study, the survival of beneficial microorganisms in field soil microcosms was investigated for 13 days using quantitative PCR with B. subtilis group-specific primers. Bacterial community dynamics of the treated soils were analyzed using 16S ribosomal RNA (rRNA) gene amplicon sequencing on the Illumina MiSeq platform. The average 16S rRNA gene copy number per g dry soil of Bacillus spp. was $4.37{\times}10^6$ after treatment, which was 1,000 times higher than that of the control. The gene copy number was generally maintained for a week and was reduced thereafter, but remained 100 times higher than that of the control. Bacterial community analysis indicated that Acidobacteria ($26.3{\pm}0.9%$), Proteobacteria ($24.2{\pm}0.5%$), Chloroflexi ($11.1{\pm}0.4%$), and Actinobacteria ($9.7{\pm}2.5%$) were abundant phyla in both treated and non-treated soils. In the treated soils, the relative abundance of Actinobacteria was lower, whereas those of Bacteroidetes and Firmicutes were higher compared to the control. Differences in total relative abundances of operational taxonomic units belonging to several genera were observed between the treated and non-treated soils, suggesting that inoculation of soil with the Bacillus strains influenced the relative abundances of certain groups of bacteria and, therefore, the dynamics of resident bacterial communities. These changes in resident soil bacterial communities in response to inoculation of soil with beneficial Bacillus spp. provide important information for the use of beneficial microorganisms in soil for sustainable agriculture.

키워드

참고문헌

  1. Taylor JP, Wilson B, Mills MS, Burns RG. 2002. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34: 387-401. https://doi.org/10.1016/S0038-0717(01)00199-7
  2. Foster RC. 1988. Microenvironments of soil microorganisms. Biol. Fertil. Soils. 6: 189-203.
  3. Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol. 60: 579-598. https://doi.org/10.1007/s13213-010-0117-1
  4. Bloemberg GV, Lugtenberg BJJ. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
  5. Compant S, Duffy B, Nowak J, Clément C, Barka EA. 2005. Use of plant growth-promoting bacteria for biocontrol of plant dis- eases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  6. Lahlali R, Peng G, Gossen BD, McGregor L, Yu FQ, Hynes RK, et al. 2012. Evidence that the biofungicide serenade (Bacillus sub- tilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology 103: 245-254.
  7. Santoyo G, Orozco-Mosqueda MdC, Govindappa M. 2012. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci. Techn. 22: 855-872. https://doi.org/10.1080/09583157.2012.694413
  8. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54: 655-670. https://doi.org/10.1046/j.1351-0754.2003.0556.x
  9. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods. 55: 541- 555. https://doi.org/10.1016/j.mimet.2003.08.009
  10. Shokralla S, Spall JL, Gibson JF, Hajibabaei M. 2012. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21: 1794-1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
  11. Janssen PH. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
  12. Ambrosini A, de Souza R, Passaglia LMP. 2016. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil. 400: 193-207. https://doi.org/10.1007/s11104-015-2727-7
  13. You C, Zhang C, Kong F, Feng C, Wang J. 2016. Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl-mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol. Eng. 91: 119-125. https://doi.org/10.1016/j.ecoleng.2016.02.011
  14. Shen Z, Ruan Y, Chao X, Zhang J, Li R, Shen Q. 2015. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertil. Soils. 51: 553-562. https://doi.org/10.1007/s00374-015-1002-7
  15. Kwon JS WH, Suh JS, Kim WG, Jang KY, Noh HJ. 2007. Plant growth promoting effect and antifungal activity of Bacillus subtilis S37-2. Korean J. Soil Sci. Fert. 40: 447-453.
  16. Kim SY, Sang MK, Weon HY, Jeon YA, Ryoo JH, Song J. 2016. Characterization of multifunctional Bacillus sp. GH1-13. Korean J. Pestic. Sci. 20: 189-196. https://doi.org/10.7585/kjps.2016.20.3.189
  17. Lee YH, Song J, Weon H-Y, Park K, Sang MK. 2016. Plant growth promotion and induced resistance by the formulated Bacillus vallismortis BS07M in Pepper. Res. Plant Dis. 22: 284-288. https://doi.org/10.5423/RPD.2016.22.4.284
  18. Wattiau P, Renard M-E, Ledent P, Debois V, Blackman G, Agathos S. 2001. A PCR test to identify Bacillus subtilis and closely related species and its application to the monitoring of wastewater biotreatment. Appl. Microbiol. Biotechnol. 56: 816- 819. https://doi.org/10.1007/s002530100691
  19. Kim DY, Kim BY, Ahn JH, Weon HY, Kim SI, Kim WG, et al. 2015. Quantitative analysis of Bacillus amyloliquefaciens GR4-5 in soil. Korean J. Org. Agric. 23: 847-858. https://doi.org/10.11625/KJOA.2015.23.4.847
  20. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  21. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: 141-145.
  22. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  23. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2017. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Sci. Rep. 7: 15019. https://doi.org/10.1038/s41598-017-14936-2
  24. Wu Y, Zeng J, Zhu Q, Zhang Z, Lin X. 2017. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci. Rep. 7: 40093. https://doi.org/10.1038/srep40093
  25. Kozdroj J, Trevors JT, van Elas JD. 2004. Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere. Soil Biol. Biochem. 36: 1775-1784. https://doi.org/10.1016/j.soilbio.2004.04.034
  26. Wu B, Wang X, Yang L, Yang H, Zeng H, Qiu Y, et al. 2016. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl. Soil Ecol. 103: 1-12. https://doi.org/10.1016/j.apsoil.2016.03.002