DOI QR코드

DOI QR Code

A Review on Emission and Mitigation of N2O in Biological Wastewater Treatment

생물학적 하폐수처리과정에서 N2O 배출 및 저감에 관한 고찰

  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2018.04.24
  • Accepted : 2018.07.09
  • Published : 2018.09.28

Abstract

Nitrous oxide ($N_2O$) is a potent greenhouse gas as well as an ozone-depleting substance. $N_2O$ is emitted during the biological nitrogen removal process in wastewater treatment systems (WTSs), and has significant environmental impacts. In this study, $N_2O$ emission in WTSs was comprehensively reviewed to better understand the effects of key parameters on $N_2O$ emission and obtain useful guidelines for $N_2O$ mitigation strategies in WTSs. Three biological pathways leading to $N_2O$ emission are hydroxylamine oxidation, nitrifier denitrification, and heterotrohic denitrification. Measurements at lab-, pilot- and full-scale WTSs have shown large variations in $N_2O$ emission (0-95% of N-loaded) during wastewater treatment. In the full-scale WTSs (0-14.6% $N_2O$ of N-loaded), the average and median values were 1.95% and 0.2% of N-loaded, respectively. Dissolved oxygen, nitrite concentrations, and chemical oxygen demand (COD)/N ratio are the most important parameters leading to $N_2O$ emission. A variety of operational strategies have been suggested to minimize $N_2O$ emission from WTSs. A new $N_2O$ mitigation strategy involving the introduction of microorganisms with high $N_2O$ reductase activity or oxygenic denitrification ability has been proposed as an alternative canonical denitrification.

아산화질소($N_2O$)는 기후변화를 야기하는 온실가스임과 동시에 오존층을 파괴하는 가스이다. 하폐수 처리시 생물학적 질소 제거 공정에서 주로 배출되는 아산화질소가 환경에 미치는 영향은 매우 중요하므로 대책 수립이 필요하다. 본 논문에서는 하폐수 처리과정의 아산화질소 배출 관련 최신 연구동향을 종합적으로 고찰함으로써, 아산화질소의 배출량 및 생성에 미치는 주요 인자의 영향을 이해하고, 아산화질소 배출 저감 전략 수립에 필요한 정보를 도출하였다. 하폐수 처리공정에서 아산화질소가 배출되는 주요 경로는 hydroxylamine 산화, nitrifier 탈질 및 종속영양 탈질공정의 3가지로 구분된다. 실험실, 파일럿 및 실 규모 하폐수 처리 공정을 대상으로 아산화질소 배출량을 측정한 결과 아산화질소 배출량의 질소 부하량의 0-95%로 변이가 매우 컸다. 실 규모 하폐수 처리공정에서는 질소 부하량의 0-14.6%가 아산화질소로 배출되고, 평균값과 중간값은 각각 1.95%와 0.2%이었다. 아산화질소 배출량에 영향을 미치는 가장 중요한 운전인자는 용존산소와 아질산염 농도 및 COD/N 비율이었다. 아산화질소 배출 저감을 위해 운전인자를 조절하는 다양한 전략이 보고되고 있다. 또한, 하폐수 처리공정에서 아산화질소 배출 저감하기 위한 새로운 전략으로, 높은 아산화질소 환원효소 활성을 가진 미생물을 활용하거나, 기존의 탈질공정 대신 산소발생 탈질공정(oxygenic denitrification)을 도입하는 것이 제안되고 있다.

Keywords

References

  1. Prather MJ, Hsu J, DeLuca NM, Jackman CH, Oman LD, Douglass AR, et al. 2015. Measuring and modeling the lifetime of nitrous oxide including its variability. J. Geophys. Res. Atmos. 120: 5693-5705.
  2. IPCC. 2014. Climate change 2014: mitigation of climate change. In Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds.), Contribution of working group III to the fifth assessment. Report of the Intergovernmental Panel on Cli-mate Change. Cambridge University Press, Cambridge.
  3. Portmann RW, Daniel JS, Ravishankara, AR. 2012. Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367: 1256-1264. https://doi.org/10.1098/rstb.2011.0377
  4. Massara TM, Malamis S, Guisasola A, Baeza JA, Noutsopoulos C, Katsou E. 2017. A review on nitrous oxide ($N_2O$) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ. 596-597: 106-123. https://doi.org/10.1016/j.scitotenv.2017.03.191
  5. Duan H, Ye L, Erler D, Ni BJ, Yuan Z. 2017. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review. Water Res. 122: 96- 113. https://doi.org/10.1016/j.watres.2017.05.054
  6. Frijns J, Roorda J, Mulder M. 2008. Op weg naar een klimaat- neutrale waterketen. $H_2O$ 41: 36-37.
  7. Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM. 2009. Nitrous oxide emission during waste-water treatment. Water Res. 43: 4093-4103. https://doi.org/10.1016/j.watres.2009.03.001
  8. Wunderlin P, Lehmann MF, Siegrist H, Tuzson B, Joss A, Emmenegger L, et al. 2013. Isotope signatures of $N_2O$ in a mixed microbial population system: constraints on $N_2O$ producing pathways in wastewater treatment. Environ. Sci. Technol. 47: 1339-1348.
  9. Ni BJ, Yuan Z. 2015. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes. Water Res. 87: 336-346. https://doi.org/10.1016/j.watres.2015.09.049
  10. Konneke M, Bernhard AE, de la Torre JR, Walker Christopher B, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. https://doi.org/10.1038/nature03911
  11. Park HD, Wells GF, Bae H, Criddle CS, Francis CA. 2006. Occurrence of ammonia-oxidizing Archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72: 5643-5647. https://doi.org/10.1128/AEM.00402-06
  12. van Niel EWJ, Arts PAM, Wesselink BJ, Robertson LA, Kuenen JG. 1993. Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures. FEMS Microbiol. Ecol. 102: 109-118. https://doi.org/10.1111/j.1574-6968.1993.tb05802.x
  13. Schreiber F, Wunderlin P, Udert KM, Wells GF. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered micro- bial communities: Biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 3: 1-24.
  14. van Benthum WAJ, Garrido JM, Mathijssen JPM, Sunde J, van Loosdrecht MCM, Heijnen JJ. 1998. Nitrogen removal in intermittently aerated biofilm airlift reactor. J. Environ. Eng. 124: 239-248. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(239)
  15. Park KY, Inamori Y, Mizuochi M, Ahn KH. 2000. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration. J. Biosci. Bioeng. 90: 247-252. https://doi.org/10.1016/S1389-1723(00)80077-8
  16. Itokawa H, Hanaki K, Matsuo T. 2001. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Res. 35: 657-664. https://doi.org/10.1016/S0043-1354(00)00309-2
  17. Zeng RJ, Yuan Z, Keller J. 2003. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnol. Bioeng. 81: 397-404. https://doi.org/10.1002/bit.10484
  18. Lemaire R, Meyer R, Taske A, Crocetti GR, Keller J, Yuan Z. 2006. Identifying causes for $N_2O$ accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. J. Biotechnol. 122: 62-72. https://doi.org/10.1016/j.jbiotec.2005.08.024
  19. Song K, Harper WF, Hori T, Riya S, Hosomi M, Terada A. 2015. Impact of carbon sources on nitrous oxide emission and microbial community structure in an anoxic/oxic activated sludge system. Clean Techn. Environ. Policy 17: 2375-2385. https://doi.org/10.1007/s10098-015-0979-9
  20. Eldyasti A, Nakhla G, Zhu J. 2014. Influence of biofilm thickness on nitrous oxide ($N_2O$) emissions from denitrifying fluidized bed bioreactors (DFBBRs). J. Biotechnol. 192: 281-290. https://doi.org/10.1016/j.jbiotec.2014.10.008
  21. Alcantara C, Munoz R, Norvill Z, Plouviez M, Guieysse B. 2015. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater. Bioresour. Technol. 177: 110-117. https://doi.org/10.1016/j.biortech.2014.10.134
  22. Gabarro J, Gonzalez-Carcamo P, Ruscalleda M, Ganigue R, Gich F, Balaguer MD, et al. 2014. Anoxic phases are the main $N_2O$ contributor in partial nitritation reactors treating high nitrogen loads with alternate aeration. Bioresour. Technol. 163: 92-99. https://doi.org/10.1016/j.biortech.2014.04.019
  23. Frison N, Chiumenti A, Katsou E, Malamis S, Bolzonella D, Fatone F. 2015. Mitigating off-gas emissions in the biological nitrogen removal via nitrite process treating anaerobic effluents. J. Clean Prod. 93: 126-133. https://doi.org/10.1016/j.jclepro.2015.01.017
  24. Czepiel P, Crill P, Harriss R. 1995. Nitrous oxide emissions from municipal wastewater treatment. Environ. Sci. Technol. 29: 2352-2356. https://doi.org/10.1021/es00009a030
  25. Wicht H, Beier M. 1995. $N_2O$ emission aus nitrifizierenden und denitrificierenden Klaranlagen. Korrespondenz Abwasser 42: 404-406.
  26. Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. 2010. $N_2O$ emissions from activated sludge processes, 2008-2009: Results of a national monitoring survey in the United States. Environ. Sci. Technol. 44: 4505-4511. https://doi.org/10.1021/es903845y
  27. Sommer J, Ciplak A, Sumer E, Benckiser G, Ottow JCG. 1998. Quantification of emitted and retained $N_2O$ in a municipal wastewater treatment plant with activated sludge and nitrifi-cation-denitrification units. Agrobiol. Res. 51: 59-73.
  28. Kimochi Y, Inamori Y, Mizuochi M, Xu KQ, Matsumura M. 1998. Nitrogen removal and $N_2O$ emission in a full-scale domestic wastewater treatment plant with intermittent aeration. J. Fer-ment. Bioeng. 86: 202-206. https://doi.org/10.1016/S0922-338X(98)80114-1
  29. de Mello WZ, Ribeiro RP, Brotto AC, Kligerman DC, Piccoli AdeS, Oliveira JLM. 2013. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urbanwastewater treatment plant. Quim. Nova 36: 16-20. https://doi.org/10.1590/S0100-40422013000100004
  30. Tumendelger A, Toyoda S, Yoshida N. 2014. Isotopic analysis of $N_2O$ produced in a conventional wastewater treatment system operated under different aeration conditions. Rapid Commun. Mass Spectrom. 28: 1883-1892. https://doi.org/10.1002/rcm.6973
  31. Aboobakar A, Cartmell E, Stephenson T, Jones M, Vale P, Dotro G. 2013. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant. Water Res. 47: 524-534. https://doi.org/10.1016/j.watres.2012.10.004
  32. Sun S, Bao Z, Sun D. 2014. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes. Environ. Sci. Pollut. Res. 22: 4222-4229.
  33. Rodriguez-Caballero A, Aymerich I, Marques R, Poch M, Pijuan M. 2015. Minimizing $N_2O$ emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor. Water Res. 71: 1-10. https://doi.org/10.1016/j.watres.2014.12.032
  34. Kampschreur MJ, van der Star W, Wielders H, Mulder JW, Jetten M, van Loosdrecht M. 2008. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res. 42: 812-826. https://doi.org/10.1016/j.watres.2007.08.022
  35. Castro-Barros C, Daelman M, Mampaey K, van Loosdrecht M, Volcke E. 2015. Effect of aeration regime on $N_2O$ emission from partial nitritation-anammox in a full-scale granular sludge reactor. Water Res. 68: 793-803. https://doi.org/10.1016/j.watres.2014.10.056
  36. Tallec G, Garnier J, Billen G, Gousailles M. 2006. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level. Water Res. 40: 2972-2980. https://doi.org/10.1016/j.watres.2006.05.037
  37. Zhu X, Chen Y. 2011. Reduction of $N_2O$ and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid. Environ. Sci. Technol. 45: 2137-2143. https://doi.org/10.1021/es102900h
  38. Hu Z, Zhang J, Li S, Xie H. 2013. Impact of carbon source on nitrous oxide emission from anoxic/oxic biological nitrogen removal process and identification of its emission sources. Environ. Sci. Pollut. Res. 20: 1059-1069. https://doi.org/10.1007/s11356-012-1018-6
  39. Zhang X, Wang X, Zhang J, Huang X, Wei D, Lan W, et al. 2016. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol). Biore-sour. Technol. 218: 789-795. https://doi.org/10.1016/j.biortech.2016.07.043
  40. Shen L, Guan Y, Wu G, Zhan X. 2013. $N_2O$ emission from a sequencing batch reactor for biological N and P removal from wastewater. Front. Environ. Sci. Eng. 8: 776-783.
  41. Chen Y, Wang D, Zheng X, Li X, Feng L, Chen H. 2014. Biological nutrient removal with low nitrous oxide generation by cancelling the anaerobic phase and extending the idle phase in a sequencing batch reactor. Chemosphere 109: 56-63. https://doi.org/10.1016/j.chemosphere.2014.02.011
  42. Yang HJ, Park JM, Kim MJ. 2008. Estimate of nitrous oxide emis- sion factors from municipal wastewater treatment plants. J. Korean Soc. Environ. Eng. 30: 1281-1286. [Korean Literature]
  43. Kampschreur M, Poldermans R, Kleerebezem R, van der Star W, Haarhuis R, Abma W, et al. 2009. Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. Water Sci. Technol. 60: 3211-3217. https://doi.org/10.2166/wst.2009.608
  44. Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Wat-son SW. 1980. Production of nitrite and nitrogen oxide ($N_2O$) by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40: 526-532.
  45. Pijuan M, Tora J, Rodriguez-Caballero A, Cesar E, Carrera J, Perez J. 2014. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater. Water Res. 19: 23-33.
  46. Otte S, Grobben NG, Robertson LA, Jetten MSM, Kuenen JG. 1996. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl. Environ. Microbiol. 62: 2421-2426.
  47. Desloover J, de Clippeleir H, Boeckx P, du Laing G, Colsen J, Verstraete W, Vlaeminck SE. 2011. Floc-based sequential partial nitritation and anammox at full scale with contrasting $N_2O$ emissions. Water Res. 45: 2811-2821. https://doi.org/10.1016/j.watres.2011.02.028
  48. Castro-Barros C, Daelman M, Mampaey K, van Loosdrecht M, Volcke E. 2013. Dynamics of $N_2O$ emission from partial nitritation-anammox in a full-scale granular sludge reactor. Proceed-ings from the 9th International Conference on Biofilm Reactors, 2013 May 28-31, Paris.
  49. Rodriguez-Caballero A, Pijuan M. 2013. $N_2O$ and NO emissions from a partial nitrification sequencing batch reactor: exploring dynamics, sources and minimization mechanisms. Water Res. 47: 3131-3140. https://doi.org/10.1016/j.watres.2013.03.019
  50. Hanaki K, Hong Z, Matsuo T. 1992. Production of nitrous oxide gas during denitrification of wastewater. Water Sci. Technol. 26: 1027-1036. https://doi.org/10.2166/wst.1992.0544
  51. Schalk-Otte S, Seviour RJ, Kuenen JG, Jetten MSM. 2000. Nitrous oxide ($N_2O$) production by Alcaligenes faecalis during feast and famine regimes. Water Res. 34: 2080-2088. https://doi.org/10.1016/S0043-1354(99)00374-7
  52. Hynes RK, Knowles R. 1984. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH, and oxygen. Can. J. Microbiol. 30: 1397-1404. https://doi.org/10.1139/m84-222
  53. Kim DJ, Kim H, Kim Y. 2011. Effect of nitrogen compounds and organic carbon concentrations on $N_2O$ emission during denitrification. Clean Technol. 17: 134-141. [Korean Literature]
  54. Wang H, Guan Y, Pan M, Wu G. 2016. Aerobic $N_2O$ emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process. J. Environ. Sci. 46: 70-79.
  55. Leix C, Drewes JE, Ye L, Koch K. 2017. Strategies for enhanced deammonification performance and reduced nitrous oxide emissions. Bioresour. Technol. 236: 174-185. https://doi.org/10.1016/j.biortech.2017.03.182
  56. Rotthauwe JH, Witzel KP, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712.
  57. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102: 14683-14688. https://doi.org/10.1073/pnas.0506625102
  58. Tourna M, Freitag TE, Nicol GW, Prosser JI. 2008. Growth, activ- ity and temperature responses of ammonia oxidising archaea and bacteria in soil microcosms. Environ. Microbiol. 10: 1357-1364. https://doi.org/10.1111/j.1462-2920.2007.01563.x
  59. Schmid MC, Hooper AB, Klotz MG, Woebken D, Lam P, Kuypers MMM, et al. 2008. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ. Microbiol. 10: 3140-3149. https://doi.org/10.1111/j.1462-2920.2008.01732.x
  60. Bru D, Sarr A, Philippot L. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73: 5971-5974. https://doi.org/10.1128/AEM.00643-07
  61. Throback IN, Enwall K, Jarvis A, Hallin S. 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community sur- veys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49: 401-417. https://doi.org/10.1016/j.femsec.2004.04.011
  62. Yu R, Kampschreur MJ, Loosdrecht MC, Chandran K. 2010. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environ. Sci. Technol. 44: 1313-1319. https://doi.org/10.1021/es902794a
  63. Braker G, Fesefeldt A, Witzel KP. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64: 3769-3775.
  64. Henry S, Baudoin E, Lopez-Gutierrez JC, Martin-Laurent F, Brauman A, Philippot L. 2004. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59: 327-335. https://doi.org/10.1016/j.mimet.2004.07.002
  65. Braker G, Tiedje JM. 2003. Nitricoxide reductase (norB) genes from pure cultures and environmental samples. Appl. Environ. Microbiol. 69: 3476-3483. https://doi.org/10.1128/AEM.69.6.3476-3483.2003
  66. Yang Y, Huang S, Zhang Y, Xu F. 2014. Nitrogen removal by Chelatococcus daeguensis TAD1 and its denitrification gene identification. Appl. Biochem. Biotechnol.172: 829-839. https://doi.org/10.1007/s12010-013-0590-7
  67. Zheng M, He D, Ma T, Chen Q, Liu S, Ahmad M, et al. 2014. Reducing NO and $N_2O$ emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1, Bioresour. Technol. 162: 80-88. https://doi.org/10.1016/j.biortech.2014.03.125
  68. Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72: 5181-5189. https://doi.org/10.1128/AEM.00231-06
  69. Kloos K, Mergel A, Sch C, Bothe H. 2001. Denitrification within the genus Azospirillum and other associative bacteria. Funct. PlantBiol. 28: 991-998. https://doi.org/10.1071/PP01071
  70. Castellano-Hinojosa A, Maza-Marquez P, Melero-Rubio Y, Gonzalez-Lopez J, Rodelas B. 2018. Linking nitrous oxide emissions to population dynamics of nitrifying and denitrifying prokaryotes in four full-scale wastewater treatment plants. Chemosphere 200: 57-66. https://doi.org/10.1016/j.chemosphere.2018.02.102
  71. Zheng M, Tian Y, Liu T, Ma T, Li L, Li C, et al. 2015. Minimization of nitrous oxide emission in a pilot-scale oxidation ditch: generation, spatial variation and microbial interpretation. Bioresour. Technol. 179: 510-517. https://doi.org/10.1016/j.biortech.2014.12.027
  72. Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M, et al. 2014. Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J. Biosci. Bioeng. 118: 289-297. https://doi.org/10.1016/j.jbiosc.2014.02.028
  73. Erkus O, de Jager VCL, Spus M, van Alen-Boerrigter IJ, van Rijswijck IMH, Hazelwood L, et al. 2013. Multifactorial diversity sustains microbial community stability. ISME J. 7: 2126-2136. https://doi.org/10.1038/ismej.2013.108
  74. Pauleta SR, Dell'Acqua S, Moura I. 2013. Nitrous oxide reductase. Coord. Chem. Rev. 257: 332-349. https://doi.org/10.1016/j.ccr.2012.05.026
  75. Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ. 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367: 1157-1168. https://doi.org/10.1098/rstb.2011.0415
  76. Zumft WG, Kroneck PM. 2007. Respiratory transformation of nitrous oxide ($N_2O$) to dinitrogen by Bacteria and Archaea. Adv. Microb. Physiol. 52: 107-227.
  77. Viebrock A, Zumft WG. 1988. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J. Bacteriol. 170: 4658-4668. https://doi.org/10.1128/jb.170.10.4658-4668.1988
  78. Simon J, Einsle O, Kroneck PM, Zumft WG. 2004. The unprece-dented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett. 569: 7-12. https://doi.org/10.1016/j.febslet.2004.05.060
  79. Figueroa-Gonzalez I, Quijano G, Laguna I, Munoz R, Garcia-Encina PA. 2016. A fundamental study on biological removal of $N_2O$ in the presence of oxygen. Chemosphere 158: 9-16. https://doi.org/10.1016/j.chemosphere.2016.05.046
  80. Frutos OD, Quijano G, Perez R, Munoz R. 2016. Simultaneous biological nitrous oxide abatement and wastewater treatment in a denitrifying off-gas bioscrubber. Chem. Eng. J. 288: 28-37. https://doi.org/10.1016/j.cej.2015.11.088
  81. Kartal B, Kuenen JG, van Loosdrecht MCM. 2010. Sewage treat-ment with Anammox. Science 328: 702-703. https://doi.org/10.1126/science.1185941
  82. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, et al. 2010. Nitritedriven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543-548. https://doi.org/10.1038/nature08883
  83. He Z, Feng Y, Zhang S, Wang X, Wu S, Pan X. 2018. Oxygenic denitrification for nitrogen removal with less greenhouse gas emissions: Microbiology and potential applications. Sci. Total Environ. 621: 453-464. https://doi.org/10.1016/j.scitotenv.2017.11.280
  84. Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MS, Keltjens JT. 2012. Bacterial oxygen production in the dark. Front. Microbiol. 3: 273.
  85. Ehrenreich P, Behrends A, Harder J, Widdel F. 2000. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch. Microbiol. 173: 58-64. https://doi.org/10.1007/s002030050008
  86. Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Sch- reiber F, et al. 2011. Alkane degradation under anoxic condi-tions by a nitratereducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ. Microbiol. Rep. 3: 125-135. https://doi.org/10.1111/j.1758-2229.2010.00198.x
  87. Coates JD, Chakraborty R, Lack JG, O'connor SM, Cole KA, Bender KS, et al. 2001. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411: 1039-1043. https://doi.org/10.1038/35082545
  88. Chakraborty R, O'Connor SM, Chan E, Coates JD. 2005. Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl. Environ. Microbiol. 71: 8649-8655. https://doi.org/10.1128/AEM.71.12.8649-8655.2005