DOI QR코드

DOI QR Code

Membrane fouling in thermophilic membrane bioreactor with different sludge retention times

  • Ince, Elif (Gebze Technical University, Department of Environmental Engineering) ;
  • Ince, Mahir (Gebze Technical University, Department of Environmental Engineering) ;
  • Topaloglu, Alikemal (Bulent Ecevit University, Department of Environmental Engineering)
  • Received : 2017.07.04
  • Accepted : 2018.03.21
  • Published : 2018.09.25

Abstract

As membrane fouling is based on various factors, it is a complex phenomenon that is hard to estimate. This study investigated membrane fouling in a thermophilic jet loop membrane bioreactor (JLMBR). With this purpose, four different empirical membrane fouling models with different sludge retention times were applied on the flow data obtained in the system. As a result of the model implementation, it was found for all sludge retention times that, standard blocking is effective in the first 1.5 hours of filtration, while cake filtration was dominant in the remaining duration. Additionally, it was observed that as the sludge retention time increases, membrane fouling rate decreases.

Keywords

Acknowledgement

Supported by : TUBITAK (The Scientific and Technological Research Council of Turkey)

References

  1. Abbasi, M., Sebzari, M.R., Salahi, A. and Mirza, B. (2011), "Modeling of membrane fouling and flux decline in microfiltration of oily wastewater using ceramic membranes", Chem. Eng. Comm., 199(1), 78-93. https://doi.org/10.1080/00986445.2011.570391
  2. Abeynayaka, A. and Visvanathan, C. (2011b), "Mesophilic and thermophilic aerobic batch biodegradation, utilization of carbon and nitrogen sources in high-strength wastewater", Bioresource Technol., 102(3), 2358-2366. https://doi.org/10.1016/j.biortech.2010.10.096
  3. Abeynayaka, A. and Visvanathan, C. (2011a), "Performance comparison of mesophilic and thermophilic aerobic sidestream membrane bioreactors treating high strength wastewater", Bioresource Technol., 102(9), 5345-5352. https://doi.org/10.1016/j.biortech.2010.11.079
  4. Ahsani, M., Havigh, M.D. and Yegani, R. (2017), "Fouling mechanisms during protein microfiltration: The effects of protein structure and filtration pressure on polypropylene microporous membrane performance", Polyolefins J., 4(2), 173-187.
  5. Ansari, S., Zokaee, F., Kaghazchi, T. and Masoodi, S. (2006), "Study of microfiltration of sweet cheese whey", Afinidad, 63(524), 303-307.
  6. A.P.H.A. (2005), Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Association, Washington, DC, U.S.A.
  7. Bolton, G., LaCasse, D. and Kuriyel, R. (2006), "Combined models of membrane fouling: development and application to microfiltration and ultrafiltration of biological fluids", J. Membr. Sci., 277(1-2), 75-84. https://doi.org/10.1016/j.memsci.2004.12.053
  8. Chang, E.E., Yang, S.Y., Huang, C.P., Liang, C.H. and Chiang, P.C. (2011), "Assessing the fouling mechanisms of highpressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model", Separ. Purif. Technol., 79(3), 329-336. https://doi.org/10.1016/j.seppur.2011.03.017
  9. Chang, I.S. and Lee, C.H. (1998), "Membrane filtration characteristics in membrane-coupled activated sludge system -the effect of physiological states of activated sludge on on membrane fouling", Desalination, 120(3), 221-233. https://doi.org/10.1016/S0011-9164(98)00220-3
  10. Cho, J., Song, K.G. and Ahn, K.H. (2005), "The activated sludge and microbial substances influences on membrane fouling in submerged membrane bioreactor: Unstirred batch cell test", Desalination, 183(1-3), 425-429. https://doi.org/10.1016/j.desal.2005.05.009
  11. Drews, A. (2010), "Membrane fouling in membrane bioreactors-characterisation, contradictions, cause and cures, review", J. Membr. Sci., 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046
  12. Farizoglu, B. and Keskinler, B. (2006), "Sludge characteristics and effect of crossflow membrane filtration on membrane fouling in a jet loop membrane bioreactor (JLMBR)", J. Membr. Sci., 279(1-2), 578-587. https://doi.org/10.1016/j.memsci.2005.12.050
  13. Feng, S., Zhang, N., Liu, H., Du, X., Liu, Y. and Lin, H. (2012), "The effect of COD/N ratio on process performance and membrane fouling in a submerged bioreactor", Desalination, 285, 232-238. https://doi.org/10.1016/j.desal.2011.10.008
  14. Grelier, P., Rosenberger, S. and Tazi-Pain, A. (2006), "Influence of sludge retention time on membrane bioreactor hydraulic performance", International Congress on Membranes and Membrane Processes (ICOM), Seoul, Korea, August.
  15. Gkotsis, P.K., Banti, D.C., Peleka, E.N., Zouboulis, A.I. and Samaras, P.E. (2014), "Fouling issues in membrane bioreactors (MBRs) for wastewater treatment: Major mechanisms, prevention and control strategies", Processes, 2(4), 795-866. https://doi.org/10.3390/pr2040795
  16. Hao, L., Liss, S.N. and Liao, B.Q. (2017), "Effect of solids retention time on membrane fouling in membrane bioreactors at a constant mixed liquor suspended solids concentration", Membr. Water Treat., 8(4), 337-353. https://doi.org/10.12989/mwt.2017.8.4.337
  17. Hermia, J. (1982), "Constant pressure blocking filtration lawsapplication to power-law non-Newtonian fluids", T. I. Chem. Eng-Lond., 60, 183-187.
  18. Herrero, C., Pradanos, P., Calvo, J.I., Tejerina, F. and Hernandez, A. (1997) "Flux decline in protein microfiltration: influence of operative parameters", J. Colloid Interf. Sci., 187(2), 344-351. https://doi.org/10.1006/jcis.1996.4662
  19. Ho, C.C. and Zydney, A.L. (1999), "Effect of membrane morphology on the initial rate of protein fouling during microfiltration", J. Membrane Sci., 155(2), 261-275. https://doi.org/10.1016/S0376-7388(98)00324-X
  20. Hosseinzadeh, M., Mehrnia, M.R. and Mostoufi, N. (2013), "Experimental study and modeling of fouling in immersed membrane bioreactor operating in constant pressure filtration", Math. Problems Eng., 2013, 1-7.
  21. Hu, B.J. and Scott, K. (1997), "Study on crossflow microfiltration of water in oil emulsions", The Jubilee Research Event, 2, Institution of Chemical Engineers (IChemE), Rugby, United Kingdom, April.
  22. Ishizaki, S., Fukushima, T., Ishii, S. and Okabe, S. (2016), "Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater", Water Res., 100, 448-457. https://doi.org/10.1016/j.watres.2016.05.027
  23. Judd, S. (2006), The MBR Book Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment, Butterworth-Heinemann, United Kingdom.
  24. Ke, O. and Junxin, L. (2009), "Effect of sludge retention time on sludge characteristics and membrane fouling of membrane bioreactor", J. Environ. Sci., 21(10), 1329-1335. https://doi.org/10.1016/S1001-0742(08)62422-5
  25. Koltuniewicz, A.B., Field, R.W. and Arton, T.C. (1995), "Crossflow and dead-end microfiltration of oily-water emulsion, Part I: Experimental study and analysis of flux decline", J. Membr. Sci., 102, 193-207. https://doi.org/10.1016/0376-7388(94)00320-X
  26. Lazaridis, N.K., Blocher, C., Dorda, J. and Matis, K.A. (2004), "A hybrid MF process based on flotation", J. Membrane Sci., 228(1), 83-88. https://doi.org/10.1016/j.memsci.2003.07.024
  27. Lee, W., Kang, S. and Shin, H. (2003), "Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors", J. Membrane Sci., 216(1-2), 217-227. https://doi.org/10.1016/S0376-7388(03)00073-5
  28. Lee, Y. and Clark, M.M. (1998), "Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions", J. Membr. Sci., 149(2), 181-202. https://doi.org/10.1016/S0376-7388(98)00177-X
  29. Li, B. and Wu, G. (2014), "Effects of sludge retention times on nutrient removal and nitrous oxide emission in biological nutrient removal processes", J. Environ. Res. Public Health, 11(4), 3553-3569. https://doi.org/10.3390/ijerph110403553
  30. Liao, B.Q., Allen, D.G., Droppo, I.G., Leppard, G.G. and Liss, S.N. (2001), "Surface properties of sludge and their role in bioflocculation and settleability", Water Res., 35(2), 339-350. https://doi.org/10.1016/S0043-1354(00)00277-3
  31. Lin, H.J., Zhang, M.J., Wang, F.Y., Meng, F.G., Liao, B.Q., Hong, H.C., Chen, J.R. and Gao, W.J. (2014), "A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies", J. Membr. Sci., 460, 110-125. https://doi.org/10.1016/j.memsci.2014.02.034
  32. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951), "Protein measurement with the Folin phenol reagent", J. Biol. Chem., 193(1), 265-275.
  33. Ma, B., Yu, W., Liu, H. and Qu, J. (2014), "Effect of low dosage of coagulant on the ultrafiltration membrane performance in feedwater treatment", Water Res., 51, 277-283. https://doi.org/10.1016/j.watres.2013.10.069
  34. Malamis, S. and Andreadakis, A. (2009), "Fractionation of proteins and carbohydrates of extracellular polymeric subtances in a membrane bioreactor system", Bioresource Technol., 100(13), 3350-3357. https://doi.org/10.1016/j.biortech.2009.01.053
  35. Masse, A., Sperandio, M. and Cabassud, C. (2006), "Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time", Water Res., 40(12), 2405-2415. https://doi.org/10.1016/j.watres.2006.04.015
  36. Mohammadi, T., Moghadam, M.K. and Saadabadi, M. (2003), "Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions", Desalination, 157(1-3), 369-375. https://doi.org/10.1016/S0011-9164(03)00419-3
  37. Nataraj, S., Schomacker, R., Kraume, M., Mishra, I.M. and Drews, A. (2008), "Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration", J. Membrane Sci., 308(1-2), 152-161. https://doi.org/10.1016/j.memsci.2007.09.060
  38. Ng, H.Y. and Hermanowicz, S.W. (2005), "Membrane bioreactor operation at short solids retention times: performance and biomass characteristics", Water Res., 39(6), 981-992. https://doi.org/10.1016/j.watres.2004.12.014
  39. Nguyen, S.T., Roddick, F.A. and Harris, J.L. (2010), "Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent", Water Sci. Technol., 62(9), 1975-1983. https://doi.org/10.2166/wst.2010.505
  40. Palacio, L., Ho, C.C., Pradanos, P., Hernandez, A. and Zydney, A.L. (2003), "Fouling with protein mixtures in microfiltration: BSA-lysozyme and BSA-pepsin", J. Membrane Sci., 222(1-2), 41-51. https://doi.org/10.1016/S0376-7388(03)00143-1
  41. Palmarin, M. and Young, S. (2016), "Influence of mixed liquor suspended solids on the removal efficiency of a hybrid membrane bioreactor", Membr. Water Treat., 7(1), 11-22. https://doi.org/10.12989/mwt.2016.7.1.011
  42. Rezaei, H., Ashtiani, F.Z. and Fouladitajar, A. (2011), "Effects of operating parameters on fouling mechanism and membrane flux in cross-flow microfiltration of whey", Desalination, 274(1-3), 262-271. https://doi.org/10.1016/j.desal.2011.02.015
  43. Saha, S. and Das, C. (2015), "Analysis of fouling characteristics and flux decline during humic acids batch ultrafiltration", Chem. Eng. Process. Technol., 6(5), 1-7.
  44. Shahata, A. and Urase, T. (2016), "Treatment of saline wastewater by thermophilic membrane bioreactor", J. Water Environ. Technol., 14(2), 76-81. https://doi.org/10.2965/jwet.15-044
  45. Li, T., Bai, R. and Liu, J. (2008), "Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm", J. Biotechnol., 135(1), 52-57. https://doi.org/10.1016/j.jbiotec.2008.02.011
  46. Velasco, C., Ouammou, M., Calvo, J.I. and Hernandez, A. (2003), "Protein fouling in microfiltration: deposition mechanism as a function of pressure for different pH", J. Colloid Interf. Sci., 266(1), 148-152. https://doi.org/10.1016/S0021-9797(03)00613-1
  47. Visvanathan, C., Choudhary, M.K., Mantalbo, M.T. and Jegatheesan, V. (2007), "Landfill leachate treatment using thermophilic membrane bioreactor", Desalination, 204(1-3), 8-16. https://doi.org/10.1016/j.desal.2006.02.028
  48. Wang, Z. and Wu, Z. (2009), "A review of membrane fouling in MBRs: Characteristics and role of sludge cake formed on membrane surfaces", Separ. Sci. Technol., 44(15), 3571-3596. https://doi.org/10.1080/01496390903182578
  49. Wang, Z.W., Han, X.M., Ma, J.X., Wang, P., Mei, X.J. and Wu, Z.C. (2013), "Recent advances in membrane fouling caused by extracellular polymeric substances: A mini-review", Desalinat. Water Treat., 51(25-27), 5121-5131. https://doi.org/10.1080/19443994.2013.768403
  50. Yildiz, E., Nuhoglu, A., Keskinler, B., Akay, G. and Farizoglu, B. (2003), "Water softening in a crossflow membrane reactor", Desalination, 159(2), 139-152. https://doi.org/10.1016/S0011-9164(03)90066-X
  51. Zhang, A., Liu, Z. Chen, Y., Kuschk, P. and Liu, Y. (2014), "Effects of EPS on membrane fouling in a hybrid membrane bioreactor for municipal wastewater treatment", Membr. Water Treat., 5(1), 1-14. https://doi.org/10.12989/mwt.2014.5.1.001
  52. Zhang, H., Wang, B., Yu, H., Zhang, L. and Song, L. (2015), "Relation between sludge properties and filterability in MBR: Under infinite SRT", Membr. Water Treat., 6(6), 501-512. https://doi.org/10.12989/mwt.2015.6.6.501