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Taste is closely related to intake of food. Taste perception 
is also influenced by type of food ingested, and nutrition and 
health status. Bitter taste plays an important role in the 
survival of human and animals to avoid probable toxic and 
harmful substances. Vertebrate animals recognize bitter taste 
through type 2 taste receptors (T2Rs). Several T2Rs have been 
expressed extra-oral such as the gastrointestinal tract, 
respiratory tract, urogenital tract, brain and immune cells, and 
parts of their functions are being revealed. This review will 
discuss physiological roles of T2Rs in relation to innate 
immunity, secretion and smooth muscle contraction expressed 
in extra-oral cells and tissues, and we summarize relationships 
between polymorphisms in T2Rs and general or oral diseases. 
It is not a coincidence that animals pay much genetic costs for 
taste and smell during evolution.
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polymorphism

Basic taste and bitter taste

The taste is closely related to the intake of food, and it is 

also influenced by the type of food ingested, and nutritional 

and healthy status. The human tastes consist of five qualities 

which is attractive or aversive to foods. The bitter taste plays 

an important role in the survival of human and animals to avoid 

probable toxic and harmful substances. The vertebrate animal 

senses bitter taste through type 2 taste receptors (T2Rs), a kind 

of G protein-coupled receptors which is exclusively expressed 

in the type 2 taste cells among four types of taste bud cells. 

Approximately 5% of the about 20,000 total genes in human 

are involved in chemosensory reception, of which more than 

30 genes are related in taste transduction. In human, 25 T2Rs 

were identified in the oral cavity [1]. The vertebrate T2Rs differ 

in the number of genes in each species. There are 3 types T2R 

in chicken, 15 types in dog, 12 types in cow, and 35 types 

in mice [2], which suggest that polymorphism of bitter taste 

receptor would be evolved.

Several T2Rs are expressed extra-oral such as gastrointestinal 

tract, respiratory tract, urogenital tract, brain and immune cells 

through various studies, and parts of their functions are being 

revealed.

The purpose of this review is to investigate expression 

patterns, localizations, and/or probable relationships between 

diseases.
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T2Rs signaling pathway

General T2Rs signaling pathway shares signaling molecules 

sweet and umami tastes such as G protein subunit, 

phospholipase C (PLCβ2), inositol trisphosphate receptor 

(IP3R) and transient receptor potential cation channel M5 

(TRPM5) [3]. Activated PLCβ2s by bitter taste substances 

produce IP3s which release Ca2⁺ from the intracellular Ca2⁺ 
reservoir and resulting Na⁺ influx through the TRPM5 channels. 

The depolarization of taste cells due to Na⁺ influx, resulting 

in secretion of neurotransmitter ATP through gap junctions or 

CALHM1 ion channels [4, 5]. ATP activates the purinergic 

receptors in type 3 taste bud cells or taste nerves, and the signals 

from taste bud project to the central nervous system as bitter 

taste [5].

Bitter taste receptors functions at the cellular 

level

Extra-oral T2Rs use at least three different mechanisms to 

play biological roles depending on the locations of expression. 

The three mechanisms are the same in the general signaling 

system of T2Rs until the process of activating the receptors 

and increasing the intracellular Ca2⁺ concentration in taste cells. 

However, their functions are different from their location found. 

Three mechanisms can be divided into cell-autonomous 

regulation, paracrine regulation, and endocrine regulation.

Cell-autonomous regulation of T2Rs is mainly found in the 

motile cilia of airway epithelial cells of human [6]. This type 

of cellular response depends on the doses of the bitter 

substances. It elicited an increase of Ca²⁺ and consequently 

accelerated ciliary beat frequency [7]. Other cell-autonomous 

control happens in the airway smooth muscles, which relax 

airway smooth muscles depending on the bitter substance doses 

[8]. The βγ subunits of g proteins can block L-type voltage- 

dependent Ca2+ channels and reduce Ca2+ influx, resulting in 

relaxation of the airway smooth muscles [9].

The paracrine regulation of T2Rs was reported in 

enteroendocrine cell (EEC). Increased Ca²⁺ as a result of 

activation of T2Rs promotes the secretion of cholecystokinin 

(CCK). CCK promotes multidrug-resistant protein 1, known as 

ATP-binding cassette B1 (ABCB1) and acts on CCK1 receptors 

in the sensory fibers of the vagus nerve, which transmits brain 

signals that regulate food intake.

It has been found that solitary chemosensory cells (SCCs) 

of nasal cavity and vomeronasal organ (VNO), or brush cells 

in the trachea of rodents, secrete acetylcholine in response to 

bitter taste chemical or bacterial signals. Acetylcholine activates 

the nicotinic acetylcholine receptors of the sensory nerve fibers, 

which reduces the respiratory rate, closes VNO, or causes 

neurogenic inflammation in the nasal cavity [10]. Similar 

protective reflexes have also been found in urethral brush cells 

of the bladder [11]. Gut brush cells form a feedforward loop 

by organizing the type 2 immune system and causing cell 

hyperplasia to parasite infestation through a general GPCR taste 

sensory system [12]. The endocrine regulation for T2Rs signal 

is that when the receptors are activated, the hormone secretes 

and then acts on the tissue or cells. Intestinal EEC secretes 

glucagonlike peptide 1 (GLP-1) and stimulates the secretion 

of insulin from the pancreatic β-cells [13].

Physiological roles of extra-oral T2Rs

Immunity
Many studies on the correlation between innate immune 

responses and bitter substances have focused on the respiratory 

system. A variety of T2Rs are expressed in the ciliated epithelial 

cells of human and rodents. Activation of T2R4, T2R43, and 

T2R46, expressed in human ciliated epithelial cells, by bitter 

chemicals increases Ca2⁺ influx and ciliary beat frequency, then 

accelerates the clearance of microbial-generated products [6]. 

A T2R38 agonist or microbe-derived quorum-sensing molecule, 

acyl-homoserine lactones (AHLs), binds to T2R38 in the apical 

membrane and cilia of sinus epithelium, producing nitrogen 

oxide, a potent bactericide [14]. When the concentration of 

quorum-sensing molecules is high enough, the biofilm is formed 

to protect bacteria from the host immune defense system [14]. 

The SCC is one of the airway epithelial cells with T2Rs and 

most taste transduction components and constitutes, and consists 

of about 1% of the surface of the respiratory system [15]. Finger 

et al. [16] first identified T2Rs-expressing SCCs in rodent nasal 

cavity. The SCC also has bitter taste signaling components such 

as α-gustducin, PLCβ2 and TRPM5 [17, 18]. Bitter taste 

substances or AHL cause the mouse nasal SCCs to secrete 

acetylcholine, which stimulates neighboring nociceptive trigeminal 

fibers to stimulate secretion of calcitonin gene-related peptide 

and substance P, resulting in the initiation of a neurogenic 
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inflammation response to block bacterial invasion. The reaction 

inhibits the inhalation of stimulants or microorganisms by 

linking protective reflexes such as respiratory rate reduction [10, 

17]. Harmful bitter taste substances bind with T2Rs expressed 

in the brush cells of the urethral system activates the urethral 

sensory nerve fibers and causes detrusor muscle contraction 

with similar manners [11].

The brush cells within gastrointestinal tract are known to 

detect parasitic infections through general taste signal 

transduction and secrete IL-25, which increases the number of 

innate lymphoid cells and their production of type 2 immune 

cytokines IL-4 and IL-13. Subsequently, cytokine promotes the 

hyperplasia of brush cells and goblet cells by promoting 

intestinal stem cell differentiation. However, it is not known 

exactly which T2Rs are involved or whether it is caused by 

another receptor [12]. It was reported that T2R transcripts were 

expressed in polymorphonuclear neutrophils. Knockdown of 

T2R43 or T2R31 in neutrophils significantly blocks chemotactic 

trans-migration induced by saccharine [22]. Other studies have 

reported that T2R38, which is expressed in human neutrophils, 

binds to the quorum-sensing molecule AHL-12 and causes 

neutrophil migration [23]. Phagocytes also express T2R38, 

which can be activated by AHL-12 [24].

Activation of T2Rs expressed in SCCs transmits Ca2⁺ to the 

surrounding cells through gap junctions and leads to secretion 

of antimicrobial peptides and β-defensin, however, it does not 

affect ciliary beat frequency [20]. In addition, the SCCs express 

sweet taste receptors, T1R2/3, which act in opposition to T2Rs. 

Activation of the airway surface with a glucose solution inhibits 

the secretion of antimicrobial peptides mediated by T2Rs. 

However, when infected with microorganisms, T1R2/3 is 

deactivated because bacteria consume glucose, consequently the 

antimicrobial peptide secretion by T2Rs increases [21]. Taken 

together, the results suggest that bitter substances may function 

in the immune system.

Secretion
T2Rs expressed in respiratory epithelial cells mediate the 

secretion of nitrogen oxides, neurotransmitters and antimicrobial 

peptides [20]. One of the roles of T2Rs in gastrointestinal 

epithelial cells is to limit their effects on toxic substances by 

limiting their consumption or promoting their excretion. EECs 

present in the epithelial layer of the gastrointestinal tract from 

the stomach to the rectum responds to food ingested by secreting 

various digestive hormones such as CCK, GLP-1, glucose- 

dependent insulinotropic peptide, peptide YY, somatostatin, 

ghrelin and serotonin [25]. Secretion of these hormones is 

mainly stimulated by luminal contents via GPCRs such as T2Rs 

[26]. Denatonium, a bitter substance, stimulates CCK secretion 

in STC-1 of the EEC line of mice [27]. Bitter taste substances 

or herbal extracts induce GLP-1 secretion in human EEC line 

NCI-H716 [28]. In vivo experiments show that the EECs can 

secrete hormones to regulate plasma glucose or toxic substances 

intake. Direct administration of bitter substances in the stomach 

leads to a rise in the plasma ghrelin levels and then increases 

short-term food intake. As a result, it reduces long-term food 

intake and delays in gastric emptying [29]. A gavage of 

denatonium followed by glucose or oral administration of herbal 

extracts to db/db mice induces GLP-1 and subsequent insulin 

secretion, thereby reducing blood glucose levels [13, 27]. Even 

though α-gustducin and TRPM5 were expressed in EECs, the 

co-localization of them and EEC markers did not confirm [30]. 

These results suggest that the glucose drop is caused exclusively 

by EECs.

The ligand of murine t2r108, 6-n-propyl-2-thiouracil 

(6-PTU), causes secretion of anions in the large intestine of 

the rat [31]. This action is considered to be a reflex action 

that can excrete harmful stimulants. T2Rs expressed in mouse 

thyrocytes negatively regulate thyroid-stimulating hormone- 

dependent iodide efflux, thus reducing the secretion of thyroid 

hormones, which can act as a protective reflection of ingestion 

of toxic substances [32]. The secretion of murine salivary glands 

is probably related to taste. The expression of T2Rs in various 

exocrine glands in rat and mouse were reported [33, 34]. T2Rs 

expressed in von Ebner glands and submandibular gland cells 

of rats responded to both quinine and PTU in a dose-dependent 

manner [33]. It was also reported that mouse tas2r108 was the 

most expressed in exocrine glands such as salivary glands, 

lacrimal glands, paracrine glands [34]. Expression levels of 

tas2r108 in the submandibular gland were higher in acinar cells 

than in ductal cells. Thus, tas2r108 expressed in the 

submandibular gland may influence in both saliva secretion and 

modification of saliva composition, however, its contribution 

is more on saliva secretion [35]. These studies suggest that 

tas2r108 may detect harmful substances that enter the body 

and secrete saliva, diluting harmful substances.

Contraction of smooth/cardiac muscles.
Many researchers are paying attention to T2Rs that expresses 

in smooth muscle. T2Rs agonists relax pre-contracted airway 
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smooth muscle and reduce airway resistance in mice [8]. The 

bitter taste substance directly inhibited IP3R-associated Ca2⁺ 
oscillations to relax the airway [37]. Tazzeo et al. [38] suggested 

that a bitter substance, caffeine, acts on the downstream of the 

myosin light chain kinase to object to the contractile apparatus, 

causing the airway smooth muscle relaxation. The bitter taste 

substances would be used as a bronchodilator. Various bitter 

substances have been shown to relax the smooth muscle of 

pre-contractile airways of human, mice, and guinea pigs [37, 

39, 40]. The advantage of using bitter taste materials as a 

bronchodilator is that it can cause pre-contracted relaxation and 

most bitter taste receptors have a broad spectrum [40]. It should 

be assessed the effectiveness of each substance when using a 

bitter taste substance as a bronchodilator. 

Zhai et al. [41] reported that human and mouse detrusor 

smooth muscle express T2Rs, and the agonist of these receptors 

relaxed the pre-contraction detrusor muscle. It was also reported 

that overactive bladder symptoms in mouse were suppressed 

by oral administration of chloroquine, a bitter substance. 

Therefore, T2R would be a therapeutic target for this disease. 

Several studies have demonstrated that bitter substances control 

smooth muscle contraction in blood vessels. Upadhyaya et al. 

[42] reported that dextromethorphan leads to vasoconstriction 

through T2R1-associated Ca2⁺ response in human pulmonary 

artery smooth muscle. According to reports, the increase in Ca2+ 

associated with canonical T2Rs signaling system directly 

activates myosin light chain kinase [42]. Applying bitter taste 

substances at low concentrations (eg, denatonium <100 μM) 

causes muscle contraction, and high concentrations (eg, 

denatonium> 500 μM) result in muscle relaxation in mouse and 

human gastrointestinal smooth muscle cells. During an oral 

nutrient challenge test on healthy subjects, denatonium elicited 

an impaired fundic relaxation in response to nutrient infusion 

and a decreased nutrient volume tolerance and increased 

satiation [43]. 

Five types of T2Rs and downstream signaling elements were 

expressed in cardiac myocytes [44]. Sodium thiocyanate, t2r108 

agonist in mice, reduced left ventricular and systolic pressures 

by 30-40%, as well as increased aortic pressure [45]. These 

actions disappeared when Gi and Gβγ inhibited. 

Male reproduction and micturition
T1Rs and taste transducers cascade components such as α

-gustducin, Gγ13 and PLCβ2 were identified in different stages 

of spermatogenesis [46]. Bitter taste substances lead to 

increased calcium influx into sperm cells, and each sperm cell 

has different activation for ligands [47]. The decrease in 

tas2r105 was made sperms smaller and it could result in male 

infertility [46]. It is believed that T2Rs play an important role 

in sperm survival by detecting harmful substances during 

fertilization.

Seven T2Rs and α-gustducin were expressed in mouse kidney 

[48]. Knockout of tas2r105-positive cells in mouse increased 

the size of glomerulus and renal tubules and decreased the 

density of glomerulus [48]. These results suggest that tas2r105 

plays an important role in maintaining the homeostasis of body 

fluids and electrolytes [48].

T2Rs may regulate various functions in relation to 

reproductive and urination, but it is inadequate to study such 

as respiratory or digestive systems.

Polymorphisms of T2Rs

T2Rs polymorphisms are an important research object that 

can clarify the taste preference and the pathophysiology of 

extra-oral T2Rs. Among T2Rs, T2R38 polymorphism is the 

most studied. The T2R38 protein can be divided into two groups 

according to positions 49, 262 and 296 of amino acid residues. 

The two mutated proteins are divided into PAV, which is a 

genotype including the functional mutation proteins proline, 

alanine and valine, and the AVI genotype, which is a genotype 

including alanine, valine and isoleucine. The binding of these 

two mutant proteins is expressed in three genotypes (PVA/PVA, 

AVI/AVI and PVA/AVI). The relationship between T2R38 

polymorphism and respiratory disease has been reported. The 

T2R38 PVA/PVA phenotype showed a much lower infection 

rate of gram-positive bacteria than those with two other 

genotypes [49]. In addition, 90% or more of patients with the 

non-functional T2R38 genotype showed chronic sinusitis [50]. 

Those with the AVI/AVI genotype showed more severe sinusitis 

[50]. T2R38 polymorphism has also been associated with cancer 

and dental caries. Carrai et al. [51] reported that the 

nonfunctional group increased the risk for rectal cancer 

compared to the functional group. T2R38 polymorphism is also 

reported to affect oral innate immunity. The transcription level 

of T2R38 in periodontal epithelial cells was increased 4.3-fold 

in PAV/PAV genotype and 1.2-fold in AVI/AVI genotype for 

the cariogenic bacteria Streptococcus mutans [51]. IL-1α 

secretion of the PAV/PAV genotype was the highest among 
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the three types of T2R38 proteins. Stimulation with periodontal 

pathogen Porphyromonas gingivalis increased the AVI/AVI 

T2R38 transcription levels by 4.4-fold [52]. These studies 

suggest that the risk for periodontal immunity and dental caries 

is more important for T2R38 than for eating habits [53]. 

Whether the results of the study were only revealed by the 

T2R38 gene polymorphism or similar results for other taste 

receptors genes should also be investigated.

T2Rs and diseases.

Many studies have reported that T2Rs mutations can cause 

disease in extra-oral tissues and emphasize the importance of 

T2Rs. T2Rs expressed in airway smooth muscle relaxes muscles 

in response to bitter substances to reduce airway resistance to 

asthma. Robinett et al. [54] observed that T2R10, 14 and 31 

agonists relax airways in both healthy and asthmatic patients. 

In severe asthma patients, T2Rs are up-regulated in leukocytes 

and these agonists can inhibit proinflammatory cytokines and 

eicosanoid secreted by leukocytes [55]. T2Rs agonists can 

control anti-inflammation and act directly on immune cells. 

These results demonstrate that T2Rs can be an important target 

for asthma treatment.

T2Rs pathophysiological roles have focused on the 

respiratory tract, but more recently, many studies have been 

conducted on the roles of other tissues. Low-fat food or sterol 

depleted culture induces increased expression of most T2Rs 

in the intestine or STC-1 cell line of mice, stimulating the 

secretion of GLP-1 and CCK [56]. The number of T2R38 

immunoreactive cells expressing in the human colon mucosa 

is significantly increased in overweight or obese subjects and 

is closely related to body mass index [57]. Expression of t2r126, 

135 and 143 in the heart of mice increased two to three fold 

at fasting [44]. Upon subcutaneous injection of nitroglycerin, 

t2r119 rapidly increased in the heart and aorta of mice [58]. 

T2R5 and T2R50 decreased in the brain of patients with 

Parkinson's disease, whereas T2R10 and T2R13 increased [59]. 

Interestingly, T2R4, 5, 14, and 50 were decreased in the entire 

dorsolateral prefrontal cortex of schizophrenia patients [64]. 

Since the heart is not directly exposed to the external 

environment and the brain is separated by the blood-brain 

barrier, there is a possibility that an endogenous ligand exists 

in the human body which causes the response of T2Rs in the 

heart and brain.

T2Rs have also been found in tumors or cancer cells. It has 

been suggested that T2R4 expression reduced in breast cancer 

patients, thereby decreasing the apoptosis caused by bitter 

substances in breast cancer cells [60]. T2R38 is known to be 

expressed in tumor cells and tumor-derived cell lines of 

pancreatic cancer patients [65]. The T2R38 specific ligand 

phenylthiourea, or a natural ligand AHL-12, activates mitogen- 

type tissue/organs/system effects references

T2R38

upper respiratory system
genotype is correlated with susceptibility, severity, and prognosis of chronic 
rhinosinusitis

14, 20, 50

colorectal cancer nonfunctional group has an increased risk of colorectal cancer 51

gingiva
genotype is associated with gingival innate immunity and the risk of dental 
caries

53

colonic mucosa increased number of immunoreactive cells in overweight and obese subjects 57

T2R19 blood glucose haplotype is associated with altered glucose and insulin homeostasis 61

T2R50 heart SNPs have a strong association with cardiovascular disease 62

T2R42 thyroid
thyroid-expressed SNP (type L196F) is associated with differences in 
circulating levels of thyroid hormones

32

T2R16 longevity an upstream position polymorphism is associated with longevity 63

T2R4 breast cancer T2R4 is down-regulated in breast cancer cells. 60

T2Rs

leukocytes 10 T2Rs are up-regulated in leukocytes in severe asthma patients 55

Parkinson’s disease 
patients’ brains

T2R5 and T2R50 are decreased, whereas T2R10 and T2R13 are augmented 
at both premotor and parkinsonian stages in the frontal cortex area

59

schizophrenia patients’ 
brains

T2R4, T2R5, T2R14, and T2R50 are down-regulated in the dorsolateral 
prefrontal cortex

64

Table 1. T2R-associated disorders and diseases in human
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activated protein kinases p38 and ERK1/2 and increases 

NFATc1 in a G protein-dependent manner. T2R38-positive 

tumors were not related to the clinical and pathologic 

parameters, but the T2R38 ligand increased the expression of 

ABCB1 and seems to be associated with pancreatic cancer 

resistance and T2R38 [65].

Perspectives

T2Rs expressed in extra-oral cells or tissues is continuously 

being discovered and its function is being revealed. Studies on 

T2Rs have been carried out on the pathophysiology of the 

respiratory tract. Based on the action of a bitter taste substance 

on T2Rs, a new approach to the treatment of asthma is presented 

by developing a bronchodilator. Recently, the expression of 

T2Rs in cancer cells was reported. The results of previous 

studies show that there is a need to study with interest the 

pharmacogenetics related to T2Rs and these polymorphisms.

There is a continuing interest in research on the relationship 

between taste receptors and oral diseases. Studies have also 

reported that the T2R38 polymorphism is associated with dental 

caries and periodontal disease. It has been also suggested that 

taste disorders would associate with burning mouth syndrome.

The taste is an important reflex stimulus for saliva formation, 

and the saliva in the mouth is an essential factor for the taste. 

We reported the expression of T2Rs in the submandibular 

glands of mice and rat. Although the exact physiological role 

has not yet been clarified, T2Rs may play a role in protecting 

the organism by causing secretion of saliva. The expression 

levels of T2Rs in salivary glands of mice were also different. 

The expression level of tas2r108 among 35 T2Rs was 

remarkably high, and it can be assumed that 35 T2Rs may not 

play the same physiological role [66]. Therefore, it is valuable 

to study elucidating the reason of uneven expression of T2Rs 

in mammals.

Many studies show that oral diseases and taste are related 

to each other. In order to predict, diagnose and treat oral 

diseases, it is necessary for oral professionals to pay attention 

to taste and conduct in depth studies.
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