DOI QR코드

DOI QR Code

Cometabolism degradation of lignin in sequencing batch biofilm reactors

  • Kuang, Faguo (Key Laboratory of the Gorges Reservoir's Eco-Environment, Chongqing University) ;
  • Li, Yancheng (Key Laboratory of the Gorges Reservoir's Eco-Environment, Chongqing University) ;
  • He, Lei (Key Laboratory of the Gorges Reservoir's Eco-Environment, Chongqing University) ;
  • Xia, Yongqiu (Key Laboratory of the Gorges Reservoir's Eco-Environment, Chongqing University) ;
  • Li, Shubai (Key Laboratory of the Gorges Reservoir's Eco-Environment, Chongqing University) ;
  • Zhou, Jian (Key Laboratory of the Gorges Reservoir's Eco-Environment, Chongqing University)
  • 투고 : 2017.12.04
  • 심사 : 2018.03.06
  • 발행 : 2018.09.30

초록

Cometabolism technology was employed to degrade lignin wastewater in Sequencing Batch Biofilm Reactor. Cometabolic system (with glucose and lignin in inflow) and the control group (only lignin in inflow) were established to do a comparative study. In contrast with the control group, the average removal rates of lignin increased by 14.7% and total oarganic carbon increased by 32% in the cometabolic system with glucose as growth substrate, under the condition of 5 mg/L DO, $0.2kgCOD/(m^3{\cdot}d)$ lignin and glucose $1.0kgCOD/(m^3{\cdot}d)$. Functional groups of lignin are degraded effectively in cometabolic system proved by fourier transform infrared spectroscopy and Gas Chromatography-Mass Spectrometer, and the degradation products were amides (mainly including acetamide, N-ethylacetamide and N, N-diethylacetamide), alcohols (mainly including glycerol and ethylene glycol) and acids. Meanwhile, results of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis showed great differences in microbial population richness between cometabolic system and the control group. The Margalef's richness index and Shannon-Wiener's diversity index of microorganism in cometabolic system were 3.075 and 2.61, respectively. The results showed that extra addition of glucose, with a concentration of 943 mg/L, was beneficial to lignin biodegradation in cometabolic system.

키워드

참고문헌

  1. Loow YL, Wu TY, Tan KA, et al. Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J. Agr. Food Chem. 2015;63:8349-8363. https://doi.org/10.1021/acs.jafc.5b01813
  2. Cai Y, Li G, Nie J, et al. Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci. Hortic. 2010;125:374-379. https://doi.org/10.1016/j.scienta.2010.04.029
  3. Loow Y, New EK, Yang GH, Ang LY, Foo LYW, Wu TY. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 2017;24:3591-3618. https://doi.org/10.1007/s10570-017-1358-y
  4. Loow Y, Wu TY, Jahim JM, Mohammad AW, Teoh WH. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 2016;23:1491-1520. https://doi.org/10.1007/s10570-016-0936-8
  5. Zhang A, Liu C, Sun R. Fractional isolation and characterization of lignin and hemicelluloses from Triploid of Populus tomentosa Carr. Ind. Crop. Prod. 2010;31:357-362. https://doi.org/10.1016/j.indcrop.2009.12.003
  6. Liu Y, Hu TJ, Wu ZP, et al. Study on biodegradation process of lignin by FTIR and DSC. Environ. Sci. Pollut. Res. 2014;21:14004-14013. https://doi.org/10.1007/s11356-014-3342-5
  7. Humpert D, Ebrahimi M, Czermak P. Membrane technology for the recovery of lignin: A review. Membranes 2016;6:42. https://doi.org/10.3390/membranes6030042
  8. Ashrafi O, Yerushalmi L, Haghighat F. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. J. Environ. Manage. 2015;158:146-157. https://doi.org/10.1016/j.jenvman.2015.05.010
  9. Asina F, Brzonova I, Voeller K, et al. Biodegradation of lignin by fungi, bacteria and laccases. Bioresour. Technol. 2016;220:414-424. https://doi.org/10.1016/j.biortech.2016.08.016
  10. Lozovaya VV, Lygin AV, Zernova OV, Li S, Widholm JM. Lignin degradation by Fusarium solani f. sp glycines. Plant Dis. 2006;90:77-82. https://doi.org/10.1094/PD-90-0077
  11. Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ. Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzyme Microb. Technol. 2013;52:1-12. https://doi.org/10.1016/j.enzmictec.2012.10.003
  12. Zeng GM, Yu HY, Huang HL, et al. Laccase activities of a soil fungus Penicillium simplicissimum in relation to lignin degradation. World J. Microbiol. Biotechnol. 2006;22:317-324. https://doi.org/10.1007/s11274-005-9025-0
  13. Mancera A, Fierro V, Pizzi A, et al. Physicochemical characterisation of sugar cane bagasse lignin oxidized by hydrogen peroxide. Polym. Degrad. Stabil. 2010;95:470-476. https://doi.org/10.1016/j.polymdegradstab.2010.01.012
  14. Sun RC, Tomkinson J, Mao FC, Sun XF. Physicochemical characterization of lignins from rice straw by hydrogen peroxide treatment. J. Appl. Polym. Sci. 2001;79:719-732. https://doi.org/10.1002/1097-4628(20010124)79:4<719::AID-APP170>3.0.CO;2-3
  15. Zhang SJ, Yu HQ, Wu LX. Degradation of calcium lignosulfonate using gamma-ray irradiation. Chemosphere 2004;57:1181-1187. https://doi.org/10.1016/j.chemosphere.2004.08.015
  16. Ouyang X, Lin Z, Deng Y, Yang D, Qiu X. Oxidative degradation of soda lignin assisted by microwave irradiation. Chinese J. Chem. Eng. 2010;18:695-702. https://doi.org/10.1016/S1004-9541(10)60277-7
  17. Sun Y, Qiu X, Liu Y. Chemical reactivity of alkali lignin modified with laccase. Biomass Bioenerg. 2013;55:198-204. https://doi.org/10.1016/j.biombioe.2013.02.006
  18. Camarero S, Martinez MJ, Martinez AT. Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuel. Bioprod. Biorefin. 2014;8: 615-625. https://doi.org/10.1002/bbb.1467
  19. D'Annibale A, Quaratino D, Federici F, Fenice M. Effect of agitation and aeration on the reduction of pollutant load of olive mill wastewater by the white-rot fungus Panus tigrinus. Biochem. Eng. J. 2006;29:243-249. https://doi.org/10.1016/j.bej.2006.01.002
  20. Kirk TK, Farrell RL. Enzymatic "combustion": The microbial degradation of lignin. Annu. Rev. Microbiol. 1987;41:465-505. https://doi.org/10.1146/annurev.mi.41.100187.002341
  21. Nzila A. Update on the cometabolism of organic pollutants by bacteria. Environ. Pollut. 2013;178:474-482. https://doi.org/10.1016/j.envpol.2013.03.042
  22. Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J. Chem. Technol. Biotechnol. 2005;80:723-736. https://doi.org/10.1002/jctb.1276
  23. Aktas O, Cecen F. Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol. Bioresour. Technol. 2009;100:4604-4610. https://doi.org/10.1016/j.biortech.2009.04.053
  24. Miller DN, Bryant JE, Madsen EL, Ghiorse WC. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 1999;65:4715-4724. https://doi.org/10.1128/AEM.65.11.4715-4724.1999
  25. Zhang J, Zhou J, Han Y, Zhang X. Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater. Bioresour. Technol. 2014;169:652-657. https://doi.org/10.1016/j.biortech.2014.07.042
  26. Ding C, Chen T, Li Z, Yan J. Assessing and monitoring the ecotoxicity of pulp and paper wastewater for irrigating reed fields using the polyurethane foam unit method based on monitoring protozoal communities. Environ. Sci. Pollut. Res. 2015;22:6590-6600. https://doi.org/10.1007/s11356-015-4285-1
  27. Miranda J, Krishnakumar G. Microalgal diversity in relation to the physicochemical parameters of some Industrial sites in Mangalore, South India. Environ. Monit. Assess. 2015;187:664. https://doi.org/10.1007/s10661-015-4871-1
  28. Li YC, Zhou J, Gong BZ, Wang Y, He Q. Cometabolic degradation of lincomycin in a Sequencing Batch Biofilm Reactor (SBBR) and its microbial community. Bioresour. Technol. 2016;214: 589-595. https://doi.org/10.1016/j.biortech.2016.04.085
  29. Liu Y, Hu T, Wu Z, et al. Study on biodegradation process of lignin by FTIR and DSC. Environ. Sci. Pollut. Res. 2014;21:14004-14013. https://doi.org/10.1007/s11356-014-3342-5
  30. Pandey KK, Pitman AJ. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeter. Biodegr. 2003;52:151-160. https://doi.org/10.1016/S0964-8305(03)00052-0

피인용 문헌

  1. Biotransformation of lignin: Mechanisms, applications and future work vol.36, pp.1, 2018, https://doi.org/10.1002/btpr.2922
  2. A comparative study of an anaerobic-oxic (AO) system and a sequencing batch biofilm reactor (SBBR) in coating wastewater treatment and their microbial communities vol.35, pp.1, 2020, https://doi.org/10.1515/npprj-2019-0024
  3. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review vol.282, pp.None, 2021, https://doi.org/10.1016/j.jenvman.2021.111946