DOI QR코드

DOI QR Code

Numerical Study on Variation of Penetration Performance into Concrete by Penetrator Nose Shape

침투자의 노즈 형상에 따른 콘크리트 침투성능 변화에 관한 수치적 연구

  • Received : 2018.06.22
  • Accepted : 2018.09.05
  • Published : 2018.09.30

Abstract

In order to destroy the hard target, it is essential to develop a penetration warhead with high penetration performance. To design a penetration warhead, this paper discusses the effect of nose shape factors such that nose shape, nose length, nose tip diameter, on the penetration performance of the penetrator. AUTODYN-2D has been used to conduct the computational analysis. The experimental result of Forrestal, and a simulation result have been compared to verify the reliability of computational analysis. Computational results show that the nose length have more influence on the penetration performance than the nose shape. Furthermore, simulation results show that the penetration performance can be improved by increasing the nose tip diameter to a specific value, when the nose length of the penetrator is uniform.

견고표적을 무력화하기 위해서는 높은 침투/관통성능을 가진 침투탄의 개발이 필수적이다. 침투탄의 설계를 위해, 본 논문에서는 노즈 형상 인자들이 침투자의 콘크리트 침투/관통성능에 미치는 영향을 분석하였다. 전산해석은 상용 전산해석 프로그램인 AUTODYN-2D를 사용하여 수행하였다. Forrestal의 시험결과를 사용하여 전산해석의 신뢰성을 검증하였으며, 침투자의 노즈 형상보다는 노즈 길이가 침투/관통성능에 더 큰 영향을 미치는 것을 확인하였다. 또한, 침투자의 노즈 길이가 일정할 경우, 노즈 팁 직경을 특정값까지 증가시켜 침투/관통성능을 향상시킬 수 있음을 확인하였다.

Keywords

References

  1. C.W.Young(1997), Penetration Equations, SAND97-2426, Sandia National Laboratories.
  2. X.W. Chen, Q.M. Li(2002), "Deep penetration of a non-deformable projectile with different geometrical characteristics", Int. J. Impact Eng., Vol. 27, pp. 619-637. https://doi.org/10.1016/S0734-743X(02)00005-2
  3. T. Borvik, M. Langseth, O.S. Hopperstad, K.A. Malo (2002), "Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses Part I: Experimental study", Int. J. Impact Eng., Vol. 27, pp. 19-35. https://doi.org/10.1016/S0734-743X(01)00034-3
  4. T. Borvik, O.S. Hopperstad, T. Berstad, M. Langseth (2002), "Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses Part II: numerical simulations", Int. J. Impact Eng., Vol. 27, pp. 37-64. https://doi.org/10.1016/S0734-743X(01)00035-5
  5. N.K. Gupta, M.A. Iqbal, G.S. Sekhon(2007), "Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates", Int. J. Solids and Structures, Vol. 44, pp. 3411-3439 https://doi.org/10.1016/j.ijsolstr.2006.09.034
  6. K.M. Kpenyigba, T. Jankowiak, A. Rusinek, R. Pesci, B. Wang(2015), "Effect of projectile nose shape on ballistic resistance of interstitial-free steel sheets", Int. J. Impact Eng., Vol. 79, pp. 83-94. https://doi.org/10.1016/j.ijimpeng.2014.10.007
  7. AUTODYN, Theory Manual, Revision 4.0, Century Dynamics Inc., 1998.
  8. M.J. Forrestal, D.J. Frew, J.P. Hickerson, T.A. Rohwer (2003), "Penetration of concrete targets with deceleration-time measurements", Int. J. Impact Eng., Vol. 28, pp. 479-497. https://doi.org/10.1016/S0734-743X(02)00108-2
  9. Kim S.B., Yoo Y.H.(2015), "Concrete Target Size Effect on Projectile Penetration", Journal of the Korea Institute of Military Science and Technology, Vol. 18, 154-159. https://doi.org/10.9766/KIMST.2015.18.2.154
  10. LS-Dyna, Theory manual, Livermore Software Technology Corporation. 2006.
  11. Herrmann, W(1969). "Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials", J. Appl. Phys., 40, 6, pp. 2490-2499. https://doi.org/10.1063/1.1658021
  12. Riedel, W., Thoma. K. and Hiermaiser, S(1999), "Numerical Analysis Using a New Macroscopic Concrete Model for Hydrocodes", Proc. 9th Int. Symposium on Interaction of effects of Munitions with Structures, pp. 315-322.
  13. Riedel, W., Kawai, N., Kondo, K(2008), "Numerical Assessment for Impact Strength Measurements in Concrete Materials", Int. J. Impact Eng., Vol. 36 (2), pp. 283. https://doi.org/10.1016/j.ijimpeng.2007.12.012
  14. Beppu M., Miwa K., Itohb M., Katayame M. and Ohno T(2008), "Damage evaluation of concrete plates by high-velocity impact." Int. J. Impact Eng., Vol. 35, pp. 1419-1426 https://doi.org/10.1016/j.ijimpeng.2008.07.021
  15. Hao Y., Hao H. and Li Z-X(2010), "Confinement effects on impact test of concrete compressive material properties." International Journal of Protective Structures, 1(1), pp. 145-167 https://doi.org/10.1260/2041-4196.1.1.145
  16. Nystrom U. and Gylltoft K(2011), "Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete.", Int. J. Impact Eng. Vol. 38, pp. 95-105. https://doi.org/10.1016/j.ijimpeng.2010.10.003
  17. M.J. Forrestal, B.S. Altman, J.D. Cargile, S.J. Hanchak (1994), "An empirical equation for penetration depth of ogive-nose projectiles into concrete targets", Int. J. Impact Eng., Vol. 15, pp. 395-405. https://doi.org/10.1016/0734-743X(94)80024-4
  18. M.J. Forrestal, D.Y. Tzou(1997), "A spherical cavity-expansion penetration model for concrete targets", Int. J. Solids Struct., Vol. 34, pp. 4127-4146. https://doi.org/10.1016/S0020-7683(97)00017-6
  19. G. Ben-Dor, A. Dubinsky, T. Elperin(2009), "High-Speed Penetration Modeling and Shape Optimization of the Projectile Penetrating into Concrete Shields", Mechanics Based Design of Structures and Machines, Vol. 37, pp.538-549. https://doi.org/10.1080/15397730903272830