DOI QR코드

DOI QR Code

Complete genome sequence of Lactobacillus plantarum SK151 isolated from kimchi

김치로부터 분리한 Lactobacillus plantarum SK151의 유전체 염기서열 해독

  • Received : 2018.06.14
  • Accepted : 2018.07.23
  • Published : 2018.09.30

Abstract

Lactobacillus plantarum is a Gram-positive, facultative heterofermentative, nonspore-forming nonmotile bacterium found in a wide range of environmental niches. Here we present the complete genome sequence of L. plantarum SK151 isolated from kimchi, which shows high adhesion to intestinal epithelial cells. The genome is 3,231,249 bp in length and has a GC content of 44.6%. The genome contains genes related to cell adhesion and a complete operon for riboflavin biosynthesis.

Lactobacillus plantarum은 그람 양성, 비운동성의 이형발효세균이며, 다양한 환경에서 서식하고 있다. L. plantarum SK151은 장관상피세포 흡착능이 우수한 균주로서, 김치로부터 분리되었다. SK151 균주의 유전체 길이는 3,231,249 염기쌍이며, G + C 함량은 44.6%이었다. SK151 균주의 유전체에는 비타민 B2 (리보플라빈) 생합성에 필요한 유전자군이 완벽하게 존재하고 있었으며, 세포 흡착과 관련된 유전자도 다수 존재하고 있었다.

Keywords

References

  1. Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE, and Molin G. 1998. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 85, 88-94. https://doi.org/10.1046/j.1365-2672.1998.00480.x
  2. Akimoto M, Sato Y, Okubo T, Todo H, Hasegawa T, and Sugibayashi K. 2006. Conversion of FAD to FMN and riboflavin in plasma: Effects of measuring method. Biol. Pharm. Bull. 29, 1779-1782. https://doi.org/10.1248/bpb.29.1779
  3. Arena MP, Russo P, Capozzi V, Lopez P, Fiocco D, and Spano G. 2014. Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl. Microbiol. Biotechnol. 98, 7569-7581. https://doi.org/10.1007/s00253-014-5837-x
  4. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75
  5. de Vries MC, Vaughan EE, Kleerebezem M, and de Vos WM. 2006. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Intl. Dairy J. 16, 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003
  6. Jeon S, Jung J, Kim K, Yoo DA, Lee C, Kang J, Cho K, Kang DK, Kwak W, Yoon SH, et al. 2017. Comparative genome analysis of Lactobacillus plantarum GB-LP3 provides candidates of survival-related genetic factors. Infect. Genet. Evol. 53, 218-226. https://doi.org/10.1016/j.meegid.2017.05.015
  7. Jia FF, Zhang LJ, Pang XH, Gu XX, Abdelazez A, Liang Y, Sun SR, and Meng XC. 2017. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Genomics 109, 432-437. https://doi.org/10.1016/j.ygeno.2017.06.008
  8. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, et al. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100, 1990-1995. https://doi.org/10.1073/pnas.0337704100
  9. Lowe TM and Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54-57. https://doi.org/10.1093/nar/gkw413
  10. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz R, Edwards RA, Gerdes S, Parrello B, Shukla M, et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D201-D214.
  11. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HTK, Rademaker JLW, Starrenburg MC., Kleerebezem M, Molenaar D, and van Hylckama Vlieg JET. 2010. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 12, 758-773. https://doi.org/10.1111/j.1462-2920.2009.02119.x
  12. Siezen RJ and van Hylckama Vlieg JET. 2011. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb. Cell Fact. 10(Suppl 1), S3. https://doi.org/10.1186/1475-2859-10-S1-S3
  13. Son SH, Jeon HL, Jeon EB, Lee NK, Park YS, Kang DK, and Paik HD. 2017. Potential probiotic Lactobacillus plantarum Ln4 from kimchi: evaluation of ${\beta}$-galactosidase and antioxidant activities. LWT - Food Sci. Technol. 85, 181-186. https://doi.org/10.1016/j.lwt.2017.07.018
  14. Valeriano VDV, Oh JK, Bagon BB, Kim H, and Kang DK. 2017. Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics in-press. doi: 10.1016/j.ygeno.2017.12.009.

Cited by

  1. Genome Analysis of Lactobacillus plantarum Isolated From Some Indian Fermented Foods for Bacteriocin Production and Probiotic Marker Genes vol.11, pp.None, 2018, https://doi.org/10.3389/fmicb.2020.00040
  2. Immunomodulatory potential of four candidate probiotic Lactobacillus strains from plant and animal origin using comparative genomic analysis vol.3, pp.12, 2018, https://doi.org/10.1099/acmi.0.000299