References
- Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE, and Molin G. 1998. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 85, 88-94. https://doi.org/10.1046/j.1365-2672.1998.00480.x
- Akimoto M, Sato Y, Okubo T, Todo H, Hasegawa T, and Sugibayashi K. 2006. Conversion of FAD to FMN and riboflavin in plasma: Effects of measuring method. Biol. Pharm. Bull. 29, 1779-1782. https://doi.org/10.1248/bpb.29.1779
- Arena MP, Russo P, Capozzi V, Lopez P, Fiocco D, and Spano G. 2014. Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl. Microbiol. Biotechnol. 98, 7569-7581. https://doi.org/10.1007/s00253-014-5837-x
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75
- de Vries MC, Vaughan EE, Kleerebezem M, and de Vos WM. 2006. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Intl. Dairy J. 16, 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003
- Jeon S, Jung J, Kim K, Yoo DA, Lee C, Kang J, Cho K, Kang DK, Kwak W, Yoon SH, et al. 2017. Comparative genome analysis of Lactobacillus plantarum GB-LP3 provides candidates of survival-related genetic factors. Infect. Genet. Evol. 53, 218-226. https://doi.org/10.1016/j.meegid.2017.05.015
- Jia FF, Zhang LJ, Pang XH, Gu XX, Abdelazez A, Liang Y, Sun SR, and Meng XC. 2017. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Genomics 109, 432-437. https://doi.org/10.1016/j.ygeno.2017.06.008
- Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, et al. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100, 1990-1995. https://doi.org/10.1073/pnas.0337704100
- Lowe TM and Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54-57. https://doi.org/10.1093/nar/gkw413
- Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz R, Edwards RA, Gerdes S, Parrello B, Shukla M, et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D201-D214.
- Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HTK, Rademaker JLW, Starrenburg MC., Kleerebezem M, Molenaar D, and van Hylckama Vlieg JET. 2010. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 12, 758-773. https://doi.org/10.1111/j.1462-2920.2009.02119.x
- Siezen RJ and van Hylckama Vlieg JET. 2011. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb. Cell Fact. 10(Suppl 1), S3. https://doi.org/10.1186/1475-2859-10-S1-S3
-
Son SH, Jeon HL, Jeon EB, Lee NK, Park YS, Kang DK, and Paik HD. 2017. Potential probiotic Lactobacillus plantarum Ln4 from kimchi: evaluation of
${\beta}$ -galactosidase and antioxidant activities. LWT - Food Sci. Technol. 85, 181-186. https://doi.org/10.1016/j.lwt.2017.07.018 - Valeriano VDV, Oh JK, Bagon BB, Kim H, and Kang DK. 2017. Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics in-press. doi: 10.1016/j.ygeno.2017.12.009.
Cited by
- Genome Analysis of Lactobacillus plantarum Isolated From Some Indian Fermented Foods for Bacteriocin Production and Probiotic Marker Genes vol.11, pp.None, 2018, https://doi.org/10.3389/fmicb.2020.00040
- Immunomodulatory potential of four candidate probiotic Lactobacillus strains from plant and animal origin using comparative genomic analysis vol.3, pp.12, 2018, https://doi.org/10.1099/acmi.0.000299