DOI QR코드

DOI QR Code

인디고 생산능을 가진 Azoarcus sp. TSPY31과 TSNA42의 유전체 분석

Complete genome sequences of Azoarcus sp. TSPY31 and TSNA42 potentially having biosynthetic ability to produce indigo

  • 투고 : 2018.05.30
  • 심사 : 2018.06.18
  • 발행 : 2018.09.30

초록

유류 오염된 해양 갯벌에서 분리한 다환방향수소족(PAHs)을 분해하는 균주들로부터 인디고로 생물전환 활성을 가진 것으로 예측되는 Azoarcus sp. TSPY31과 TSNA42 균주를 동정하였다. 이 두 균주의 유전체 분석을 실시한 결과, 모두 하나의 완전한 chromosome으로 구성되며, TSPY31은 총 4,572,082 bp에 G + C 함량은 63.2%로 이루어져 있고, TSNA42는 4,886,934 bp에 G + C 함량은 62.8%이었다. 이 두 균주 모두 인돌을 인디고로 전환하는 효소인 styrene monooxygenase를 각각 2 copy씩 보유하고 있는 것으로 확인되었다.

Azoarcus are known to contain bacterial strains usually found in contaminated areas. Two strains of Azoarcus sp., TSPY31 and TSNA42, were isolated from oil-contaminated marine tidal flats, and their genomic structures were analyzed. The genomes of both TSPY31 and TSNA42 were composed of a single complete chromosome of 4,572,082 bp (G + C content: 63.2%) and 4,886,934 bp (G + C content: 62.8%), respectively. Both genomes were found to contain two copies of styrene monooxygenases that are predicted to be responsible for converting indole to indigo.

키워드

참고문헌

  1. Cheng L, Yin S, Chen M, Sun B, Hao S, and Wang C. 2016. Enhancing indigo production by over-expression of the styrene monooxygenase in Pseudomonas putida. Curr. Microbiol. 73, 248-254. https://doi.org/10.1007/s00284-016-1055-3
  2. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
  3. Dagher F, Deziel E, Lirette P, Paquette G, Bisaillon JG, and Villemur R. 1997. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can. J. Microbiol. 43, 368-377. https://doi.org/10.1139/m97-051
  4. Han GH, Shin HJ, and Kim SW. 2008. Optimization of bio-indigo production by recombinant E. coli harboring fmo gene. Enzyme Microb. Technol. 42, 617-623. https://doi.org/10.1016/j.enzmictec.2008.02.004
  5. Kim JY, Lee K, Kim Y, Kim CK, and Lee K. 2003. Production of dyestuffs from indole derivatives by naphthalene dioxygenase and toluene dioxygenase. Lett. Appl. Microbiol. 36, 343-348. https://doi.org/10.1046/j.1472-765X.2003.01279.x
  6. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, and Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5, R12. https://doi.org/10.1186/gb-2004-5-2-r12
  7. Kwon TH, Woo JH, Park NH, and Kim JS. 2015. Characterization of PAH (Polycyclic aromatic hydrocarbon)-degrading bacteria isolated from commercial gasoline. Korean J. Environ. Agric. 34, 244-251. https://doi.org/10.5338/KJEA.2015.34.3.34
  8. O'Connor KE, Dobson ADW, and Hartmans S. 1997. Indigo formation by microorganisms expressing styrene monooxygenase. Appl. Environ. Microbiol. 63, 4287-4291.
  9. Pearson GA, Serrao EA, Procaccini G, Duarte C, and Marba N. 2006. Genomic DNA isolation from green and brown algae (caulerpales and fucales) for microsatellite library construction. J. Phycol. 42, 741-745. https://doi.org/10.1111/j.1529-8817.2006.00218.x

피인용 문헌

  1. Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera vol.12, pp.1, 2021, https://doi.org/10.3390/genes12010071