DOI QR코드

DOI QR Code

한국 주요 상수원수에서의 가시아메바와 파울러자유아메바 조사

Surveillance of viable Acanthamoeba spp. and Naegleria fowleri in major water sources for tap water in Korea

  • 김민정 (한국수자원공사 수질연구센터) ;
  • 이규철 (한국수자원공사 수질연구센터) ;
  • 김건우 (한국수자원공사 수질연구센터) ;
  • 이현지 (한국수자원공사 수질연구센터) ;
  • 김민영 (한국수자원공사 수질연구센터) ;
  • 서대근 (한국수자원공사 수돗물품질부) ;
  • 이정엽 (한국수자원공사 수질연구센터) ;
  • 조영철 (충북대학교 환경공학과)
  • 투고 : 2018.06.27
  • 심사 : 2018.07.06
  • 발행 : 2018.09.30

초록

자유생활아메바인 가시아메바(Acanthamoeba spp.)와 파울러자유아메바(Naegleria fowleri)는 아메바성 뇌염 등 치명적인 질병을 일으키며, 물을 포함한 자연 환경에 널리 분포한다. 가시아메바와 파울러자유아메바가 한국의 주요 상수원수에 존재하는지 알아보기 위해 배양법에 기초한 실시간 중합효소연쇄반응법을 이용하여 2017년 7월부터 12월 사이에 한국의 52개 주요 상수원수를 조사하였다. 가시아메바와 파울러자유아메바가 각각 42개 시료(80.8%)와 6개 시료(11.5%)에서 검출되었다. 가시아메바의 경우 계절과 상관없이 고른 검출율을 보였으나, 파울러자유아메바는 주로 여름과 가을에 검출되었으며 겨울에는 검출되지 않았다. 이상의 결과는 이러한 자유생활아메바가 한국의 상수 원수에도 고루 존재한다는 것을 의미한다.

The pathogenic free-living amoebas (FLAs), Acanthamoeba spp. and Naegleria fowleri, can cause fatal infections, including amoebic encephalitis. They are ubiquitously distributed in nature, including in diverse bodies of water. In order to survey Acanthamoeba spp. and N. fowleri in source water in Korea, we used culture-based real-time PCR to detect viable FLAs in 52 source water samples collected between July 2017 and December 2017. Acanthamoeba spp. and N. fowleri were detected in 42 samples (80.8%) and 6 samples (11.5%), respectively. Acanthamoeba spp. were detected at approximately the same frequency in all seasons, but N. fowleri was mainly detected in summer and autumn, with no N. fowleri detected in winter. These results demonstrate that these pathogenic FLAs, especially N. fowleri, which has caused deaths in the United States and China, are widely distributed in the Korean aquatic environment.

키워드

참고문헌

  1. Cope JR, Ratard RC, Hill VR, Sokol T, Causey JJ, Yoder JS, Mirani G, Mull B, Mukerjee KA, Narayanan J, et al. 2015. The first association of a primary amebic meningoencephalitis death with culturable Naegleria fowleri in tap water from a US treated public drinking water system. Clin. Infect. Dis. 15, e36-42.
  2. Coulon C, Collignon A, McDonnell G, and Thomas V. 2010. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J. Clin. Microbiol. 48, 2689-2697. https://doi.org/10.1128/JCM.00309-10
  3. Cursons RT, Brown TJ, and Keys EA. 1980. Effect of disinfectants on pathogenic free-living amoebae: in axenic conditions. Appl. Environ. Microbiol. 40, 62-66.
  4. da Rocha-Azevedo B, Tanowitz HB, and Marciano-Cabral F. 2009. Diagnosis of infections caused by pathogenic free-living amoebae. Interdiscip. Perspect. Infect. Dis. 2009, 251406.
  5. De Jonckheere JF. 2004. Molecular definition and the ubiquity of species in the genus Naegleria. Protist 155, 89-103. https://doi.org/10.1078/1434461000167
  6. De Jonckheere JF. 2012. The impact of man on the occurrence of the pathogenic free-living amoeboflagellate Naegleria fowleri. Future Microbiol. 7, 5-7. https://doi.org/10.2217/fmb.11.141
  7. De Jonckheere J and van de Voorde H. 1976. Differences in destruction of cysts of pathogenic and nonpathogenic Naegleria and Acanthamoeba by chlorine. Appl. Environ. Microbiol. 31, 294-297.
  8. Derda M, Wojtkowiak-Giera A, and Hadas E. 2014. Comparative analyses of different genetic markers for the detection of Acanthamoeba spp. isolates. Acta Parasitol. 59, 472-477.
  9. Goudot S, Herbelin P, Mathieu L, Soreau S, Banas S, and Jorand FP. 2014. Biocidal efficacy of monochloramine against planktonic and biofilm-associated Naegleria fowleri cells. J. Appl. Microbiol. 116, 1055-1065. https://doi.org/10.1111/jam.12429
  10. Hoffmann R and Michel R. 2001. Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int. J. Hyg. Environ. Health 203, 215-219. https://doi.org/10.1078/S1438-4639(04)70031-0
  11. Huizinga HW and McLaughlin GL. 1990. Thermal ecology of Naegleria fowleri from a power plant cooling reservoir. Appl. Environ. Microbiol. 56, 2200-2205.
  12. Jeong HJ and Yu HS. 2005. The role of domestic tap water in Acanthamoeba contamination in contact lens storage cases in Korea. Korean J. Parasitol. 43, 47-50. https://doi.org/10.3347/kjp.2005.43.2.47
  13. Jung EY, Jung ME, Park HG, Jung JM, Rho JS, and Ryu PJ. 2008. Distribution of Acanthamoeba spp. in raw water and water treatment process. J. Environ. Sci. 17, 1121-1127.
  14. Korea Centers for Disease Control and prevention (KCDC). 2014. Settlement of diagnostic methods of Naegleria fowelri infection and detection methods for Naegleria fowleri form natural environments.
  15. Madarova L, TrnKova K, Feikova S, Klement C, and Obernauerova M. 2010. A real-time PCR diagnostic method for detection of Naegleria fowleri. Exp. Parasitol. 126, 37-41. https://doi.org/10.1016/j.exppara.2009.11.001
  16. Mahittikorn A, Mori H., Popruk S, Roobthaisong A, Sutthikornchai C, Marciano-Cabral F, MacLean R, Mensah A, and LaPat-Polasko L. 2003. Identification of Naegleria fowleri in domestic water sources by nested PCR. Appl. Environ. Microbiol. 69, 5864-5869. https://doi.org/10.1128/AEM.69.10.5864-5869.2003
  17. Marciano-Cabral F and Cabral G. 2003. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16, 273-307. https://doi.org/10.1128/CMR.16.2.273-307.2003
  18. Martinez AJ and Visvesvara GS. 1997. Free-living, amphizoic and opportunistic amebas. Brain Pathol. 7, 583-598. https://doi.org/10.1111/j.1750-3639.1997.tb01076.x
  19. Mathers MD, Nelson SE, Lane JL, Wilson ME, Allen RC, and Folberg R. 2000. Confirmation of confocal microscopy diagnosis of Acanthamoeba keratitis using polymerase chain reaction analysis. Arch. Ophthalmol. 118, 178-183. https://doi.org/10.1001/archopht.118.2.178
  20. Moussa M, De Jonckheere JF, Guerlotte J, Richard V, Bastaraud A, Romana M, and Talarmin A. 2013. Survey of Naegleria fowleri in geothermal recreational waters of Guadeloupe (French West Indies). PLoS One 8, e54414. https://doi.org/10.1371/journal.pone.0054414
  21. Nam S, Kwon S, Kim MJ, Chae JC, Maeng PJ, Park JG, and Lee GC. 2011. Selective detection of viable Helicobacter pylori using ethidium monoazide or propidium monoazide in combination with real-time polymerase chain reaction. Microbiol. Immunol. 55, 841-846. https://doi.org/10.1111/j.1348-0421.2011.00388.x
  22. National Institute of Environmental Research (NIER). 2009. Settlement of the management and risk assessment system for environmental harmful microorganisms.
  23. Ozcelik S, Coskun KA, Yunlu O, Alim A, and Malatyal E. 2012. The prevalence, isolation and morphotyping of potentially pathogenic free-living amoebae from tap water and environmental water sources in Sivas. Turkiye Parazitol. Derg. 36, 198-203.
  24. Qvarnstrom Y, Visversvara GS, Sriram R, and da Silva AJ. 2006. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J. Clin. Microbiol. 44, 3589-3595. https://doi.org/10.1128/JCM.00875-06
  25. Sarkar P and Gerba CP. 2012. Inactivation of Naegleria fowleri by chlorine and ultraviolet light. Am. Water Works Assoc. 104, E173-E180. https://doi.org/10.5942/jawwa.2012.104.0041
  26. Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, Fuerst PA, and Byers TJ. 2001. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoeba from humans with keratitis and from sewage sludge. J. Clin. Microbiol. 39, 1903-1911. https://doi.org/10.1128/JCM.39.5.1903-1911.2001
  27. Schuster FL and Visvesvara GS. 2004. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 34, 1001-1027. https://doi.org/10.1016/j.ijpara.2004.06.004
  28. Shakoor S, Beg MA, Mahmood SF, Bandea R, Sriram R, Noman F, Ali F, Visvesvara GS, and Zafar A. 2011. Primary amebic meningoencephalitis caused by Naegleria fowleri, Karachi, Pakistan. Emerg. Infect. Dis. 17, 258-261. https://doi.org/10.3201/eid1702.100442
  29. Siddiqui R and Khan NA. 2012. Biology and pathogenesis of Acanthamoeba. Parasit. Vectors 5, 6. https://doi.org/10.1186/1756-3305-5-6
  30. Thomas JM and Ashbolt NJ. 2011. Do free-living amoebae in treated drinking water systems present an emerging health risk? Environ. Sci. Technol. 45, 860-869. https://doi.org/10.1021/es102876y
  31. Thomas V, Bouchez T, Nicolas V, Robert Sl, Loret JF, and Levi Y. 2004. Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J. Appl. Microbiol. 97, 950-963. https://doi.org/10.1111/j.1365-2672.2004.02391.x
  32. Valasek MA and Repa JJ. 2005. The power of real-time PCR. Adv. Physiol. Educ. 29, 151-159. https://doi.org/10.1152/advan.00019.2005
  33. Visvesvara GS. 2010. Free-living amebae as opportunistic agents of human disease. J. Neroparasitology 1, 13.
  34. Visvesvara GS, Moura H, and Schuster FL. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia Mandrillaris, Naegleria fowleri and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 50, 1-26. https://doi.org/10.1111/j.1574-695X.2007.00232.x
  35. World Health Organization (WHO). 2017. Guidelines for drinking water quality.
  36. Yang HW, Lee YR, Inoue N, Jha BK, Danne DB, Kim HK, Lee J, Goo YK, Kong HH, Chung DI, et al. 2013. Loop-mediated isothermal amplification targeting 18S ribosomal DNA for rapid detection of Acanthamoeba. Korean J. Parasitol. 51, 269-277. https://doi.org/10.3347/kjp.2013.51.3.269
  37. Yoder JS, Straif-Bourgeois S, Roy SL, Moore TA, Visvesvara GS, Ratard RC, Hill VR, Wilson JD, Linscott AJ, Crager R, et al. 2012. Primary amebic meningoencephalitis deaths associated with sinus irrigation using contaminated tap water. Clin. Infect. Dis. 55, e79-85. https://doi.org/10.1093/cid/cis626