DOI QR코드

DOI QR Code

점액세균의 이차대사산물

Secondary metabolites of myxobacteria

  • 현혜숙 (호서대학교 생명공학과) ;
  • 조경연 (호서대학교 생명공학과)
  • 투고 : 2018.07.02
  • 심사 : 2018.08.26
  • 발행 : 2018.09.30

초록

점액세균은 포식활동, 자기방어, 세포 간 신호전달 및 아직까지 알려지지 않은 다른 기능을 위해 다양한 이차대사산물을 생산한다. 점액세균에서 분리된 많은 이차대사산물들은 독특한 작용기작을 가지며 항암, 항세균, 항진균 등과 같은 약학적으로 유용한 생리활성을 보인다. 따라서 전 세계적으로 많은 점액세균 균주들이 분리되었고 이들로부터 다양한 생리활성물질들이 탐색되었다. 하지만 16S rRNA 데이터베이스 분석에 의하면 야생에는 지금까지 분리된 종류 이외에도 다양한 점액세균 종류들이 존재할 것으로 추정되며, 유전체 서열 분석에 의하면 각 점액세균들은 기존에 알려진 물질보다 더 많은 물질을 생산할 수 있는 능력이 있는 것으로 나타났다. 본 총설에서는 점액세균 유래 이차대사산물들과 이들의 유전자, 점액세균에서의 기능, 생합성 유전자의 발현을 조절하는 전사조절인자 등에 대한 최근까지의 연구 현황을 살펴보았다.

Myxobacteria produce diverse secondary metabolites for predation, self-defense, intercellular signaling, and other unknown functions. Many secondary metabolites isolated from myxobacteria show pharmaceutically useful bioactivity such as anticancer, antibacterial, and antifungal activities with a unique mechanism of action. Therefore, a large number of myxobacterial strains have been isolated globally and many bioactive compounds have been purified from them. However, 16S rRNA database analysis indicates that there are far more types of myxobacterial species in the wild than have ever been isolated, and genome sequence analysis suggests that each myxobacterium is capable of producing much more metabolites than already known. In this article, the current status of studies on the secondary metabolites from myxobacteria, their biosynthetic genes, biological functions, and transcriptional regulatory factors governing gene expression were reviewed.

키워드

참고문헌

  1. Ahn JW. 2009. Spirodienal, a new spiroketal from Sorangium cellulosum. Bull. Korean Chem. Soc. 30, 742-744. https://doi.org/10.5012/bkcs.2009.30.3.742
  2. Ahn JW, Jang KH, Chung SC, Oh KB, and Shin J. 2008. Sorangiadenosine, a new sesquiterpene adenoside from the myxobacterium Sorangium cellulosum. Org. Lett. 10, 1167-1169. https://doi.org/10.1021/ol800061h
  3. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, et al. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108-160. https://doi.org/10.1039/C2NP20085F
  4. Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Huttel S, Harmrolfs K, Stadler M, and Muller R. 2014. Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew. Chem. Int. Ed. 53, 14605-14609. https://doi.org/10.1002/anie.201409964
  5. Belogurov GA, Vassylyeva MN, Sevostyanova A, Appleman JR, Xiang AX, Lira R, Webber SE, Klyuyev S, Nudler E, Artsimovitch I, et al. 2009. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457, 332335.
  6. Berdy J. 2005. Bioactive microbial metabolites. J. Antibiot. 58, 1-26. https://doi.org/10.1038/ja.2005.1
  7. Berdy J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65, 385-395. https://doi.org/10.1038/ja.2012.27
  8. Berleman JE, Allen S, Danielewicz MA, Remis JP, Gorur A, Cunha J, Hadi MZ, Zusman DR, Northen TR, Witkowska HE, et al. 2014. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front. Microbiol. 5, 474.
  9. Bode HB, Irschik H, Wenzel SC, Reichenbach H, Muller R, and Hofle G. 2003. The leupyrrins: a structurally unique family of secondary metabolites from the myxobacterium Sorangium cellulosum. J. Nat. Prod. 66, 1203-1206. https://doi.org/10.1021/np030109v
  10. Brodmann T, Janssen D, Sasse F, Irschik H, Jansen R, Muller R, and Kalesse M. 2010. Isolation and synthesis of chivotriene, a chivosazole shunt product from Sorangium cellulosum. Eur. J. Org. Chem. 2010, 5155-5159. https://doi.org/10.1002/ejoc.201000781
  11. Browning DF, Whitworth DE, and Hodgson DA. 2003. Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 48, 237-251. https://doi.org/10.1046/j.1365-2958.2003.03431.x
  12. Burchard RP and Dworkin M. 1966. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J. Bacteriol. 91, 535-545.
  13. Castro CN, Freitag J, Berod L, Lochner M, and Sparwasser T. 2015. Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Mol. Immunol. 68, 575-584. https://doi.org/10.1016/j.molimm.2015.07.025
  14. Dickschat JS, Bode HB, Wenzel SC, Muller R, and Schulz S. 2005a. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem 6, 2023-2033. https://doi.org/10.1002/cbic.200500174
  15. Dickschat JS, Reichenbach H, Wagner-Dobler I, and Schulz S. 2005b. Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur. J. Org. Chem. 2005, 4141-4153. https://doi.org/10.1002/ejoc.200500280
  16. Dickschat JS, Wenzel SC, Bode HB, Muller R, and Schulz S. 2004. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chembiochem 5, 778-787. https://doi.org/10.1002/cbic.200300813
  17. Diestel R, Irschik H, Jansen R, Khalil MW, Reichenbach H, and Sasse F. 2009. Chivosazoles A and F, cytostatic macrolides from myxobacteria, interfere with actin. Chembiochem 10, 2900-2903. https://doi.org/10.1002/cbic.200900562
  18. Elnakady YA, Sasse F, Lunsdorf H, and Reichenbach H. 2004. Disorazol A1, a highly effective antimitotic agent acting on tubulin polymerization and inducing apoptosis in mammalian cells. Biochem. Pharmacol. 67, 927-935. https://doi.org/10.1016/j.bcp.2003.10.029
  19. Euzeby JP. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590-592. https://doi.org/10.1099/00207713-47-2-590
  20. Fleta-Soriano E, Smutna K, Martinez JP, Lorca-Oro C, Sadiq SK, Mirambeau G, Lopez-Iglesias C, Bosch M, Pol A, Bronstrup M, et al. 2017. The Myxobacterial metabolite soraphen A inhibits HIV-1 by reducing virus production and altering virion composition. Antimicrob. Agents Chemother. 61, e00739-17.
  21. Fujimoto H, Kinoshita T, Suzuki H, and Umezawa H. 1970. Studies on the mode of action of althiomycin. J. Antibiot. 23, 271-275. https://doi.org/10.7164/antibiotics.23.271
  22. Gerth K, Bedorf N, Hofle G, Irschik H, and Reichenbach H. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. J. Antibiot. 49, 560-563. https://doi.org/10.7164/antibiotics.49.560
  23. Gerth K, Pradella S, Perlova O, Beyer S, and Muller R. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106, 233-253. https://doi.org/10.1016/j.jbiotec.2003.07.015
  24. Gronewold TM, Sasse F, Lunsdorf H, and Reichenbach H. 1999. Effects of rhizopodin and latrunculin B on the morphology and on the actin cytoskeleton of mammalian cells. Cell Tissue Res. 295, 121-129. https://doi.org/10.1007/s004410051218
  25. Herrmann J, Fayad AA, and Muller R. 2017. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 34, 135-160. https://doi.org/10.1039/C6NP00106H
  26. Hirsch H. 1977. Bacteriocins form Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 115, 45-49. https://doi.org/10.1007/BF00427843
  27. Hyun H, Lee S, Lee JS, and Cho K. 2018. Genetic and functional analysis of the DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675. J. Microbiol. Biotechnol. 28, 1068-1077.
  28. Irschik H and Reichenbach H. 1985. The mechanism of action of myxovalargin A, a peptide antibiotic from Myxococcus fulvus. J. Antibiot. 38, 1237-1245. https://doi.org/10.7164/antibiotics.38.1237
  29. Irschik H, Reichenbach H, Hofle G, and Jansen R. 2007. The thuggacins, novel antibacterial macrolides from Sorangium cellulosum acting against selected Gram-positive bacteria. J. Antibiot. 60, 733-738. https://doi.org/10.1038/ja.2007.95
  30. Kahnt J, Aguiluz K, Koch J, Treuner-Lange A, Konovalova A, Huntley S, Hoppert M, Sogaard-Andersen L, and Hedderich R. 2010. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J. Proteome Res. 9, 5197-5208. https://doi.org/10.1021/pr1004983
  31. Keane R and Berleman J. 2016. The predatory life cycle of Myxococcus xanthus. Microbiology 162, 1-11. https://doi.org/10.1099/mic.0.000208
  32. Kim YJ, Kim HJ, Kim GW, Cho K, Takahashi S, Koshino H, and Kim WG. 2016. Isolation of coralmycins A and B, potent anti-Gram negative compounds from the myxobacteria Corallococcus coralloides M23. J. Nat. Prod. 79, 2223-2228. https://doi.org/10.1021/acs.jnatprod.6b00294
  33. Kim JS, Lee YC, Nam HT, Li G, Yun EJ, Song KS, Seo KS, Park JH, Ahn JW, Zee O, et al. 2007. Apicularen A induces cell death through Fas ligand up-regulation and microtubule disruption by tubulin down-regulation in HM7 human colon cancer cells. Clin. Cancer Res. 13, 6509-6517. https://doi.org/10.1158/1078-0432.CCR-07-1428
  34. Kjaerulff L, Raju R, Panter F, Scheid U, Garcia R, Herrmann J, and Muller R. 2017. Pyxipyrrolones: structure eucidation and biosynthesis of cytotoxic myxobacterial metabolites. Angew. Chem. Int. Ed. 56, 9614-9618. https://doi.org/10.1002/anie.201704790
  35. Kroos L. 2017. Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet. 33, 3-15. https://doi.org/10.1016/j.tig.2016.10.006
  36. Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, and Muller R. 2008. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl. Environ. Microbiol. 74, 3058-3068. https://doi.org/10.1128/AEM.02863-07
  37. Kunze B, Reck M, Dotsch A, Lemme A, Schummer D, Irschik H, Steinmetz H, and Wagner-Dobler I. 2010. Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol. 10, 199. https://doi.org/10.1186/1471-2180-10-199
  38. Kunze B, Trowitzsch-Kienast W, Hofle G, and Reichenbach H. 1992. Nannochelins A, B and C, new iron-chelating compounds from Nannocystis exedens (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 45, 147-150. https://doi.org/10.7164/antibiotics.45.147
  39. Li X, Zee OP, Shin HJ, Seo Y, and Ahn AW. 2007. Soraphinol A, a new indole alkaloid from Sorangium cellulosum. Bull. Korean Chem. Soc. 28, 835-836. https://doi.org/10.5012/bkcs.2007.28.5.835
  40. Manor A, Eli I, Varon M, Judes H, and Rosenberg E. 1989. Effect of adhesive antibiotic TA on plaque and gingivitis in man. J. Clin. Periodontol. 16, 621-624. https://doi.org/10.1111/j.1600-051X.1989.tb01029.x
  41. Mauriello EM, Mignot T, Yang Z, and Zusman DR. 2010. Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol. Mol. Biol. Rev. 74, 229-249. https://doi.org/10.1128/MMBR.00043-09
  42. McCurdy HD and MacRae TH. 1974. Xanthacin. A bacteriocin of Myxococcus xanthus fb. Can. J. Microbiol. 20, 131-135. https://doi.org/10.1139/m74-021
  43. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, and Breitling R. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39, W339-W346. https://doi.org/10.1093/nar/gkr466
  44. Meiser P, Bode HB, and Muller R. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103, 19128-19133. https://doi.org/10.1073/pnas.0606039103
  45. Mulwa LS, Jansen R, Praditya DF, Mohr KI, Wink J, Steinmann E, and Stadler M. 2018. Six heterocyclic metabolites from the myxobacterium Labilithrix luteola. Molecules 23, 542. https://doi.org/10.3390/molecules23030542
  46. Munoz J, Arias JM, and Montoya E. 1984. Production and properties of a bacteriocin from Myxococcus coralloides D. J. Appl. Bacteriol. 57, 69-74. https://doi.org/10.1111/j.1365-2672.1984.tb02357.x
  47. Murray BC, Peterson MT, and Fecik RA. 2015. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep. 32, 654-662. https://doi.org/10.1039/C4NP00036F
  48. Nadmid S, Plaza A, Lauro G, Garcia R, Bifulco G, and Muller R. 2014. Hyalachelins A-C, unusual siderophores isolated from the terrestrial myxobacterium Hyalangium minutum. Org. Lett. 16, 4130-4133. https://doi.org/10.1021/ol501826a
  49. Nyfeler B, Hoepfner D, Palestrant D, Kirby CA, Whitehead L, Yu R, Deng G, Caughlan RE, Woods AL, Jones AK, et al. 2012. Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS One 7, e42657. https://doi.org/10.1371/journal.pone.0042657
  50. Panter F, Krug D, Baumann S, and Muller R. 2018. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem. Sci. 9, 4898-4908. https://doi.org/10.1039/C8SC01325J
  51. Perez J, Moraleda-Munoz A, Marcos-Torres FJ, and Munoz-Dorado J. 2016. Bacterial predation: 75 years and counting! Environ. Microbiol. 18, 766-779.
  52. Plaga W, Stamm I, and Schairer HU. 1998. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. USA 95, 11263-11267. https://doi.org/10.1073/pnas.95.19.11263
  53. Rachid S, Gerth K, Kochems I, and Muller R. 2007. Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol. Microbiol. 63, 1783-1796. https://doi.org/10.1111/j.1365-2958.2007.05627.x
  54. Rachid S, Gerth K, and Muller R. 2009. NtcA-a negative regulator of secondary metabolite biosynthesis in Sorangium cellulosum. J. Biotechnol. 140, 135-142. https://doi.org/10.1016/j.jbiotec.2008.10.010
  55. Rachid S, Sasse F, Beyer S, and Muller R. 2006. Identification of StiR, the first regulator of secondary metabolite formation in the myxobacterium Cystobacter fuscus Cb f17.1. J. Biotechnol. 121, 429-441. https://doi.org/10.1016/j.jbiotec.2005.08.014
  56. Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, and Garrity GM. (eds.), Bergey's manual of systematic bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI., USA.
  57. Reichenbach H, Lang E, Schumann P, and Spror C. 2006. Byssovorax cruenta gen. nov., sp. nov., nom. rev., a cellulose-degrading myxobacterium: rediscovery of 'Myxococcus cruentus' Thaxter 1897. Int. J. Syst. Evol. Microbiol. 56, 2357-2363. https://doi.org/10.1099/ijs.0.63628-0
  58. Ringel SM, Greenough RC, Roemer S, Connor D, Gutt AL, Blair B, Kanter G, and von Strandtmann M. 1977. Ambruticin (W7783), a new antifungal antibiotic. J. Antibiot. 30, 371-375. https://doi.org/10.7164/antibiotics.30.371
  59. Sanford RA, Cole JR, and Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68, 893-900. https://doi.org/10.1128/AEM.68.2.893-900.2002
  60. Sasse F, Kunze B, Gronewold TM, and Reichenbach H. 1998. The chondramides: cytostatic agents from myxobacteria acting on the actin cytoskeleton. J. Natl. Cancer Inst. 90, 1559-1563. https://doi.org/10.1093/jnci/90.20.1559
  61. Schaberle TF, Lohr F, Schmitz A, and Konig GM. 2014. Antibiotics from myxobacteria. Nat. Prod. Rep. 31, 953-972. https://doi.org/10.1039/c4np00011k
  62. Schifrin A, Khatri Y, Kirsch P, Thiel V, Schulz S, and Bernhardt R. 2016. A single terpene synthase is responsible for a wide variety of sesquiterpenes in Sorangium cellulosum Soce56. Org. Biomol. Chem. 14, 3385-3393. https://doi.org/10.1039/C6OB00130K
  63. Schifrin A, Ly TT, Gunnewich N, Zapp J, Thiel V, Schulz S, Hannemann F, Khatri Y, and Bernhardt R. 2015. Characterization of the gene cluster CYP264B1-geoA from Sorangium cellulosum So ce56: biosynthesis of (+)-eremophilene and its hydroxylation. Chembiochem 16, 337-344. https://doi.org/10.1002/cbic.201402443
  64. Schulz S, Fuhlendorff J, and Reichenbach H. 2004. Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60, 3863-3872. https://doi.org/10.1016/j.tet.2004.03.005
  65. Shimkets LJ. 1990. Social and developmental biology of the myxobacteria. Microbiol. Rev. 54, 473-501.
  66. Shimkets LJ, Dworkin M, and Reichenbach H. 2006. The myxobacteria, pp. 31-115. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, and Stackebrandt E. (eds.), The Prokaryotes, 3rd ed., vol. 7, Springer, New York, NY, USA.
  67. Shin H, Youn J, An D, and Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41, 44-51. https://doi.org/10.4014/kjmb.1210.10011
  68. Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, and Muller R. 2000. The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur. J. Biochem. 267, 6476-6485. https://doi.org/10.1046/j.1432-1327.2000.01740.x
  69. Stein A. 2010. Ixabepilone. Clin. J. Oncol. Nurs. 14, 65-71. https://doi.org/10.1188/10.CJON.65-71
  70. Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, and Hofle G. 2004. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. 43, 4888-4892. https://doi.org/10.1002/anie.200460147
  71. Steinmetz H, Li J, Fu C, Zaburannyi N, Kunze B, Harmrolfs K, Schmitt V, Herrmann J, Reichenbach H, Hofle G, et al. 2016. Isolation, structure elucidation, and (bio)synthesis of haprolid, a cell-type-specific myxobacterial cytotoxin. Angew. Chem. Int. Ed. 55, 10113-10117. https://doi.org/10.1002/anie.201603288
  72. Stoiber K, Naglo O, Pernpeintner C, Zhang S, Koeberle A, Ulrich M, Werz O, Muller R, Zahler S, Lohmuller T, et al. 2018. Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. Br. J. Cancer 118, 43-51. https://doi.org/10.1038/bjc.2017.374
  73. Surup F, Viehrig K, Rachid S, Plaza A, Maurer CK, Hartmann RW, and Muller R. 2018. Crocadepsins-depsipeptides from the myxobacterium Chondromyces crocatus found by a genome mining approach. ACS Chem. Biol. 13, 267-272. https://doi.org/10.1021/acschembio.7b00900
  74. Tomura T, Nagashima S, Yamazaki S, Iizuka T, Fudou R, and Ojika M. 2017. An unusual diterpene-enhygromic acid and deoxyenhygrolides from a marine myxobacterium, Enhygromyxa sp. Mar. Drugs 15, E109. https://doi.org/10.3390/md15040109
  75. Trowitzsch W, Witte L, and Reichenbach H. 1981. Geosmin from earthy smelling culture of Nannocystis exedens (Myxobacterales). FEMS Microbiol. Lett. 12, 257-226. https://doi.org/10.1111/j.1574-6968.1981.tb07653.x
  76. Tsai H and Hirsch H. 1981. The primary structure of fulvocin C from Myxococcus fulvus. Biochim. Biophys Acta 667, 213-217. https://doi.org/10.1016/0005-2795(81)90082-9
  77. Tyc O, Song C, Dickschat JS, Vos M, and Garbeva P. 2017. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280-292. https://doi.org/10.1016/j.tim.2016.12.002
  78. Vahlensieck HF, Pridzun L, Reichenbach H, and Hinnen A. 1994. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr. Genet. 25, 95-100. https://doi.org/10.1007/BF00309532
  79. Viehrig K, Surup F, Volz C, Herrmann J, Abou Fayad A, Adam S, Kohnke J, Trauner D, and Muller R. 2017. Structure and biosynthesis of crocagins: polycyclic posttranslationally modified ribosomal peptides from Chondromyces crocatus. Angew. Chem. Int. Ed. 56, 7407-7410. https://doi.org/10.1002/anie.201612640
  80. Volz C, Kegler C, and Muller R. 2012. Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility, and predation. Chem. Biol. 19, 1447-1459. https://doi.org/10.1016/j.chembiol.2012.09.010
  81. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, et al. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237-W243. https://doi.org/10.1093/nar/gkv437
  82. Weissman KJ and Muller R. 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17, 2121-2136. https://doi.org/10.1016/j.bmc.2008.11.025
  83. Weissman KJ and Muller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27, 1276-1295. https://doi.org/10.1039/c001260m
  84. Wenzel SC and Muller R. 2007. Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry. Nat. Prod. Rep. 24, 1211-1224. https://doi.org/10.1039/b706416k
  85. Wenzel SC and Muller R. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat. Prod. Rep. 26, 1385-1407. https://doi.org/10.1039/b817073h
  86. Xiao Y, Wei X, Ebright R, and Wall D. 2011. Antibiotic production by myxobacteria plays a role in predation. J. Bacteriol. 193, 4626-4633. https://doi.org/10.1128/JB.05052-11
  87. Yamamoto E, Muramatsu H, and Nagai K. 2014. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 64, 3360-3368. https://doi.org/10.1099/ijs.0.063198-0
  88. Yang C, Kwon S, Kim SJ, Jeong M, Park JY, Park D, Hong SJ, Jung JW, and Kim C. 2017. Identification of indothiazinone as a natural antiplatelet agent. Chem. Biol. Drug 90, 873-882. https://doi.org/10.1111/cbdd.13008
  89. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, and Chun J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  90. Ziemert N, Alanjary M, and Weber T. 2016. The evolution of genome mining in microbes - a review. Nat. Prod. Rep. 33, 988-1005. https://doi.org/10.1039/C6NP00025H