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ESTIMATE FOR INITIAL MACLAURIN COEFFICIENTS

OF GENERAL SUBCLASSES OF BI-UNIVALENT

FUNCTIONS OF COMPLEX ORDER INVOLVING

SUBORDINATION

Şahsene Altınkaya∗, Sibel Yalçın

Abstract. The object of this paper to construct a new class

Am
µ,λ,δ(α, β, γ, t,Ψ)

of bi-univalent functions of complex order defined in the open unit
disc. The second and the third coefficients of the Taylor-Maclaurin
series for functions in the new subclass are determined. Several
special consequences of the results are also indicated.

1. Introduction

Let A be the class of functions f of the form

(1) f(z) = z + a2z
2 + a3z

3 + · · · ,

which are analytic in the open unit disc ∆ = {z : z ∈ C and |z| < 1}
and normalized under the conditions

f(0) = 0, f ′(0) = 1.

Further, by S we shall denote the class of all functions in A which are
univalent in ∆. With a view to recalling the principle of subordination
between analytic functions, let the functions f and g be analytic in ∆.
Given functions f, g ∈ A, f is subordinate to g if there exists a Schwarz
function w ∈ Λ, where

Λ = {w : w (0) = 0, |w (z)| < 1, z ∈ ∆} ,
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such that
f (z) = g (w (z)) (z ∈ ∆) .

We denote this subordination by

f ≺ g or f (z) ≺ g (z) (z ∈ ∆) .

In particular, if the function g is univalent in ∆, the above subordination
is equivalent to

f(0) = g(0), f(∆) ⊂ g(∆).

According to the Koebe-One Quarter Theorem [11], it ensures that the
image of ∆ under every univalent function f ∈ A contains a disc of radius
1/4. Thus every univalent function f ∈ A has an inverse f−1 satisfying
f−1 (f (z)) = z and f

(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

(2) g(w) = f−1 (w) = w −a2w2+
(
2a22 − a3

)
w3−

(
5a32 − 5a2a3 + a4

)
w4+· · · .

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1

are univalent in ∆. Let Σ denote the class of bi-univalent functions in
∆ given by (1). For a brief history and interesting examples in the
class Σ, see [24] (see also [6], [7], [15], [18]). Furthermore, many recent
papers have been devoted to the problem of finding non-sharp estimates
on the first two coefficients |a2| and |a3| in the Taylor-Maclaurin series
expansion (1) (see, for example, [5], [13], [16] and [23]). There are,
however, few papers that discuss the general coefficient bounds |an| for
the analytic bi-univalent functions ([4], [12], [21]). The problem to find
the coefficient bounds on

|an| (n ∈ N\ {1, 2} ; N = {1, 2, 3, ...})
for functions f ∈ Σ is still an open problem.

The study of operators plays an important role in the Geometric
Function Theory and its related fields. It is observed that this formalism
brings an ease in further mathematical exploration and also helps to
understand the geometric properties of such operators better (see, for
example [2], [3], [8], [14] and [17]). Recently, Amourah and Darus [10]
introduced the following differential operator as given below:

A0
µ,λ,δ(α, β)f(z) = f(z),

A1
µ,λ,δ(α, β)f(z) =

[
1− (λ− α)β

λ+ µ

]
f(z)+

(λ− α)β

λ+ µ
zf ′(z)+

δ

λ+ µ
z2f ′′(z),

...

...

Am
µ,λ,δ(α, β)f(z) = Aµ,λ,δ(α, β)

(
Am−1
µ,λ,δ(α, β)f(z)

)
,



bi-univalent functions of complex order 393

or equivalently

Am
µ,λ,δ(α, β)f(z) = z +

∞∑
n=2

[
1 +

(n− 1) [(λ− α)β + nδ]

λ+ µ

]m
anz

n,

where

(f ∈ A, m ∈ N0 = N ∪ {0}, α, δ ≥ 0, β, λ, µ > 0, α 6= λ; z, w ∈ ∆).

It should be remarked that the operator Am
µ,λ,δ(α, β) is a general-

ization of many other linear operators studied by earlier researchers.
Namely:

• for δ = 0, α = 0, β = 1, the operator Am
µ,λ,0(0, 1) ≡ Imµ,λ has been

studied Swamy (see [25]),
• for δ = 0, µ = 1 − λ, the operator Am

1−λ,λ,0(α, β) ≡ Dm
λ (α, β) has

been studied by Darus and İbrahim (see [9]),
• for δ = 0, µ = 1−λ, α = 0, β = 1, the operator Am1−λ,λ,0(0, 1) ≡Dm

λ

has been studied by Al-Oboudi (see [1]),
• for µ = 0, λ = 1, δ = 0 and α = 0, β = 1 the operator Am0,1,0(0, 1) ≡
Dm is the popular Salagean operator [22].

Firstly, we will state the Lemma 1.1 to obtain our result.

Lemma 1.1. (Carathèodory Lemma) (see [20]) If c ∈ P , then |ci| ≤ 2
for each i, where P is the family all functions c, analytic in ∆, for which

<{c(z)} > 0,

where

c(z) = 1 + c1z + c2z
2 + · · · .

Through out this paper it is assumed that Ψ be an analytic function
with positive real part in ∆, with Ψ (0) = 1 and Ψ′ (0) > 0. Also, let
Ψ (∆) be starlike with respect to 1 and symmetric with respect to the
real axis. Such a function has a series expansion of the following form:

(3) Ψ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · (B1 > 0, z ∈ ∆) .

Making use of the differential operator Am
µ,λ,δ(α, β), we introduce a

new class of analytic bi-univalent functions as follows:

Definition 1.2. A function f ∈ Σ given by (1) belongs to the class

Am
µ,λ,δ(α, β, γ, t,Ψ)

(γ ∈ C\{0}, 0 ≤ t < 1; m ∈ N0, α, δ ≥ 0, β, λ, µ > 0, α 6= λ; z, w ∈ ∆)
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if the following subordinations are satisfied:

1 +
1

γ

[
z
(
Am
µ,λ,δ(α, β)f(z)

)′
(1− t)Am

µ,λ,δ(α, β)f(z) + tz
(
Am
µ,λ,δ(α, β)f(z)

)′ − 1

]
≺ Ψ(z)

and

1 +
1

γ

[
w
(
Am
µ,λ,δ(α, β)g(w)

)′
(1− t)Am

µ,λ,δ(α, β)g(w) + tw
(
Am
µ,λ,δ(α, β)g(w)

)′ − 1

]
≺ Ψ(w),

where the function g is given by (2).

Example 1.3. For t = 0 and γ ∈ C\{0}, a function f ∈ Σ given by
(1) is said to be in the class Am

µ,λ,δ(α, β, γ,Ψ), if the following conditions
are satisfied:

1 +
1

γ

[
z
(
Am
µ,λ,δ(α, β)f(z)

)′
Am
µ,λ,δ(α, β)f(z)

− 1

]
≺ Ψ(z)

and

1 +
1

γ

[
w
(
Am
µ,λ,δ(α, β)f(z)

)′
Am
µ,λ,δ(α, β)f(z)

− 1

]
≺ Ψ(w),

where m ∈ N0, α, δ ≥ 0, β, λ, µ > 0, α 6= λ; z, w ∈ ∆ and the function
g is given by (2).

Example 1.4. (see [19]) For t = m = 0 and γ ∈ C\{0}, a function
f ∈ Σ given by (1) is said to be in the class S∗Σ (γ,Ψ), if the following
conditions are satisfied:

1 +
1

γ

[
zf ′(z)

f(z)
− 1

]
≺ Ψ(z)

and

1 +
1

γ

[
wg′(w)

g(w)
− 1

]
≺ Ψ(w),

where z, w ∈ ∆ and the function g is given by (2).

2. Main result

We begin this section by finding the estimates on the coefficients
|a2| and |a3| for functions in the class Am

µ,λ,δ(α, β, γ, t,Ψ) proposed by
Definition 1.2.
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Theorem 2.1. Let f of the form (1) be in the class Am
µ,λ,δ(α, β, γ, t,Ψ).

Then

|a2| ≤
|γ|B1

√
B1√∣∣[2(1− t)Y − (1− t2)X2] γB2
1 − (1− t)2X2(B2 −B1)

∣∣
and

|a3| ≤
|γ|2B2

1

(1− t)2X2
+

|γ|B1

2(1− t) |Y |
,

where

(4) X =

[
1 +

(λ− α)β + 2δ

λ+ µ

]m
and

(5) Y =

[
1 +

2(λ− α)β + 4δ

λ+ µ

]m
.

Proof. Since f ∈ Am
µ,λ,δ(α, β, γ, t,Ψ), from Definition 1.2 we get

(6) 1 +
1

γ

[
z
(
Am
µ,λ,δ(α, β)f(z)

)′
(1− t)Am

µ,λ,δ(α, β)f(z) + tz
(
Am
µ,λ,δ(α, β)f(z)

)′ − 1

]
= Ψ(u(z))

and

(7) 1+
1

γ

[
w
(
Am
µ,λ,δ(α, β)g(w)

)′
(1− t)Am

µ,λ,δ(α, β)g(w) + tw
(
Am
µ,λ,δ(α, β)g(w)

)′ − 1

]
= Ψ(v(w)),

where u, v are analytic functions satisfying u, v : ∆ → ∆ with u(0) =
v(0) = 0, |u(z)| < 1, |v(w)| < 1.

Now let us determine the functions c1 and c2 in P given by

c1(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + · · ·

and

c2(w) =
1 + v(w)

1− v(w)
= 1 + d1w + d2w

2 + · · · .

Thus,

(8) u(z) =
c1(z)− 1

c1(z) + 1
=

1

2

[
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

]
and

(9) v(w) =
c2(w)− 1

c2(w) + 1
=

1

2

[
d1w +

(
d2 −

d2
1

2

)
w2 + · · ·

]
.
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The fact that c1 and c2 are analytic in ∆ with c1(0) = c2(0) = 1. Since
u, v : ∆ → ∆, the functions c1, c2 have a positive real part in ∆, and
the relations |ci| ≤ 2 and |di| ≤ 2 are true. Using (8) and (9) together
with (3) in the right hands of the relations (6) and (7), we obtain

Ψ (u(z)) = 1 +
1

2
B1c1z +

{
1

2
B1

(
c2 −

c2
1

2

)
+

1

4
B2c

2
1

}
z2 + · · ·

and

(10) Ψ (v(w)) = 1 +
1

2
B1d1w +

{
1

2
B1

(
d2 −

d2
1

2

)
+

1

4
B2d

2
1

}
w2 + · · · .

In the light of (6) and (7), we get

(11)
(1− t)X

γ
a2 =

B1c1

2
,

(12)
2(1− t)Y a3 − (1− t2)X2a2

2

γ
=
B1

2

(
c2 −

c21
2

)
+
B2c

2
1

4

and

(13) −(1− t)X
γ

a2 =
B1d1

2
,

(14)
2(1− t)Y (2a2

2 − a3)− (1− t2)X2a2
2

γ
=
B1

2

(
d2 −

d21
2

)
+
B2d

2
1

4
.

Now, (11) and (13) give

(15) c1 = −d1

and

(16) 8(1− t)2X2a2
2 = γ2B2

1

(
c2

1 + d2
1

)
.

Adding (12) and (14), we get

(17)
4(1− t)Y − 2(1− t2)X

γ
a2

2 =
B1 (c2 + d2)

2
+

(B2 −B1)
(
c2

1 + d2
1

)
4

.

and thus, by using (15), (16) and Lemma 1.1 in (17), we obtain

|a2| ≤
|γ|B1

√
B1√∣∣[2(1− t)Y − (1− t2)X2] γB2
1 − (1− t)2X2(B2 −B1)

∣∣ .
The first inequality of the conclusion is proved.
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Next, to find the bound on |a3|, by using subtracting (14) and (12),
we deduce

(18)
4(1− t)Y

γ

(
a3 − a2

2

)
=
B1 (c2 − d2)

2
.

It follows from (15), (16) and (18) that

a3 =
γ2B2

1

(
c2

1 + d2
1

)
8(1− t)2X2

+
γB1 (c2 − d2)

8(1− t)Y
.

Finally, taking modulus on both sides and applying Lemma 1.1, we
readily get

|a3| ≤
|γ|2B2

1

(1− t)2X2
+

|γ|B1

2(1− t) |Y |
.

Remark 2.2. Letf of the form (1) be in the class Am
µ,λ,δ(α, β, γ,Ψ).

Then

|a2| ≤
|γ|B1

√
B1√∣∣[2Y −X2] γB2

1 −X2(B2 −B1)
∣∣

and

|a3| ≤ |γ|B1

(
|γ|B1

X2
+

1

2 |Y |

)
,

where X,Y are given by (4) and (5), respectively.

Remark 2.3. Letf of the form (1) be in the class S∗Σ (γ,Ψ) . Then

|a2| ≤
|γ|B1

√
B1√∣∣γB2

1 − (B2 −B1)
∣∣

and

|a3| ≤ |γ|2B2
1 +
|γ|B1

2
.

3. Applications of the main result

Various choices of Ψ as mentioned above and suitably choosing the
values of B1 and B2, we state some interesting results analogous to
Theorem 2.1 and the Corollaries 3.1 to 3.3.

For example, the function Ψ is given by

Ψ (z) =

(
1 + z

1− z

)θ
= 1 + 2θz + 2θ2z2 + · · · (0 < θ ≤ 1) ,
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which gives
B1 = 2θ and B2 = 2θ2.

Corollary 3.1. Letf ∈ Am
µ,λ,δ(α, β, γ, t, θ) be of the form (1). Then

|a2| ≤
2 |γ| θ√

|[4(1− t)Y − 2(1− t2)X2] γθ + (1− t)2X2(1− θ)|
and

|a3| ≤
2 |γ| θ
(1− t)

(
2 |γ| θ

(1− t)X2
+

1

2 |Y |

)
,

where X,Y are given by (4) and (5), respectively.

By taking

Ψ (z) =
1 + (1− 2η) z

1− z
= 1+2 (1− η) z+2 (1− η) z2+· · · (0 ≤ η < 1) ,

we obtain immediately that

B1 = B2 = 2 (1− η) .

Corollary 3.2. Let f ∈ Am
µ,λ,δ(α, β, γ, t, η) be of the form (1). Then

|a2| ≤
|γ|
√

2 (1− η)√
|[2(1− t)Y − (1− t2)X2] γ|

and

|a3| ≤
2 |γ| (1− η)

(1− t)

(
2 |γ| (1− η)

(1− t)X2
+

1

2 |Y |

)
,

where X,Y are given by (4) and (5), respectively.

On the other hand, for −1 ≤ B < A ≤ 1, if we let

Ψ (z) =
1 +Az

1 +Bz
= 1 + (A−B)z −B(A−B)z2 + · · · ,

then we have

B1 = (A−B) and B2 = −B(A−B).

Corollary 3.3. Let f ∈ Am
µ,λ,δ(α, β, γ, t, A,B) be of the form (1).

Then

|a2| ≤
|γ| (A−B)√

|[2(1− t)Y − (1− t2)X2] γ(A−B) + (1− t)2X2(1 +B) |
and

|a3| ≤
|γ| (A−B)

(1− t)

(
|γ| (A−B)

(1− t)X2
+

1

2 |Y |

)
,

where X,Y are given by (4) and (5), respectively.
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By suitably specializing the parameters, the class Am
µ,λ,δ(α, β, γ, t,Ψ)

reduces to the various subclasses of bi-univalent functions. The details
involved may be left as an exercise for the interested reader.
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a class of analytic functions defined by using a new differential operator, Applied
Mathematical Sciences 9 (2015), 1355-1368.
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