DOI QR코드

DOI QR Code

Chemicals from Cimicifuga dahurica and Their Inhibitory Effects on Pro-inflammatory Cytokine Production by LPS-stimulated Bone Marrow-derived Dendritic Cells

  • Thao, Nguyen Phuong (Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST)) ;
  • Lee, Young Suk (College of Pharmacy, Chungnam National University) ;
  • Luyen, Bui Thi Thuy (Hanoi University of Pharmacy) ;
  • Van Oanh, Ha (Hanoi University of Pharmacy) ;
  • Ali, Irshad (School of Medicine and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Arooj, Madeeha (School of Medicine and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Koh, Young Sang (School of Medicine and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Yang, Seo Young (College of Pharmacy, Chungnam National University) ;
  • Kim, Young Ho (College of Pharmacy, Chungnam National University)
  • Received : 2018.03.21
  • Accepted : 2018.05.01
  • Published : 2018.09.30

Abstract

Inflammation is a biological response caused by overactivation of the immune system and is controlled by immune cells via a variety of cytokines. The overproduction of pro-inflammatory cytokines enhances abnormal host immunity, resulting in diseases such as rheumatoid arthritis, cardiovascular disease, Alzheimer's disease, and cancer. Inhibiting the production of pro-inflammatory cytokines such as interleukin (IL)-12p40, IL-6, and tumor necrosis factor $(TNF)-{\alpha}$ might be one way to treat these conditions. Here, we investigated the anti-inflammatory activity of compounds isolated from Cimicifuga dahurica (Turcz.) Maxim., which is traditionally used as an antipyretic and analgesic in Korea. In primary cell culture assays, 12 compounds were found to inhibit the production of pro-inflammatory cytokines (IL-12p40, IL-6, and $TNF-{\alpha}$) in vitro in bone marrow-derived dendritic cells stimulated with LPS.

Keywords

References

  1. Schwab, J. M.; Serhan, C. N. Curr. Opin. Pharmacol. 2006, 6, 414- 420. https://doi.org/10.1016/j.coph.2006.02.006
  2. Efron, P. A.; Tsujimoto, H.; Bahjat, F. R.; Ungaro, R.; Debernardis, J.; Tannahill, C.; Baker, H. V.; Edwards, C. K.; Moldawer, L. L. J. Endotoxin Res. 2005, 11, 145-160. https://doi.org/10.1177/09680519050110030301
  3. Ueno, H., Klechevsky, E.; Morita, R.; Aspord, C.; Cao, T.; Matsui, T.; Di Pucchio, T.; Connolly, J.; Fay, J. W.; Pascual, V.; Palucka, A. K.; Banchereau, J. Immunol. Rev. 2007, 219, 118-142. https://doi.org/10.1111/j.1600-065X.2007.00551.x
  4. Gubler, U.; Chua, A. O.; Schoenhaut, D. S.; Dwyer, C. M.; McComas, W.; Motyka, R.; Nabavi, N.; Wolitzky, A. G.; Quinn, P. M.; Familletti, P. C. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 4143-4147. https://doi.org/10.1073/pnas.88.10.4143
  5. Kishimoto, T. Int. Immunol. 2010, 22, 347-352. https://doi.org/10.1093/intimm/dxq030
  6. Gahring, L. C.; Carlson, N. G.; Kulmar, R. A.; Rogers, S. W. Neuroimmunomodulation 1996, 3, 289-303. https://doi.org/10.1159/000097283
  7. Beutler, B.; Cerami, A. Nature 1986, 320, 584-588. https://doi.org/10.1038/320584a0
  8. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China, vol. 1.; China Medical Science and Technology Press, china, 2010, pp 68-69.
  9. Qin, R.; Zhao, Y.; Zhao, Y.; Zhou, W.; Lv, C.; Lu, J. Fitoterapia 2016, 115, 52-56. https://doi.org/10.1016/j.fitote.2016.09.016
  10. Zhang, L. L.; Si, J. Y.; Zhang, L. J.; Xiao-Wei, H.; Lin, L.; Li, R. Y.; Chen, D.; Cao, L. Chin. J. Integr. Med. 2016, 1-9.
  11. Tian, Z.; Si, J.; Chang, Q.; Zhou, L.; Chen, S.; Xiao, P.; Wu, E. BMC Cancer 2007, 7, 237. https://doi.org/10.1186/1471-2407-7-237
  12. Lv, C.; Yang, F.; Qin, R.; Qi, Z.; Zhou, W.; Lu, J. Bioorg. Med. Chem. Lett. 2017, 27, 3305-3309. https://doi.org/10.1016/j.bmcl.2017.06.020
  13. Thao, N. P.; Kim, J. H.; Thuy Luyen, B. T.; Dat, N. T.; Kim, Y. H. Int. J. Biol. Macromol. 2017, 98, 526-534. https://doi.org/10.1016/j.ijbiomac.2017.02.023
  14. Thao, N. P.; Luyen, B. T.; Lee, J. S.; Kim, J. H.; Kim, Y. H. Bioorg. Med. Chem. Lett. 2017, 27, 1874-1879. https://doi.org/10.1016/j.bmcl.2017.02.013
  15. Thao, N. P.; Luyen, B. T. T.; Lee, J. S.; Kim, J. H.; Dat, N. T.; Kim, Y. H. J. Nat. Prod. 2017, 80, 1867-1875. https://doi.org/10.1021/acs.jnatprod.7b00166

Cited by

  1. Inhibitory effect of particulate matter on toll-like receptor 9 stimulated dendritic cells by downregulating mitogen-activated protein kinase and NF-κB pathway vol.83, pp.9, 2020, https://doi.org/10.1080/15287394.2020.1756018
  2. 3'-O-Acetyl-24-Epi-7,8-Didehydrocimigenol-3-O-β-D-Xylopryranoside Decreases Amyloid Beta Production in Amyloid Precursor Protein-Transfected HeLa Cells vol.29, pp.3, 2021, https://doi.org/10.4062/biomolther.2020.195
  3. Three new cycloart-7-ene triterpenoid glycosides from Cimicifuga dahurica and their anti-inflammatory effects vol.35, pp.21, 2018, https://doi.org/10.1080/14786419.2020.1719487
  4. Systematically identifying the anti‐inflammatory constituents of Cimicifuga dahurica by UPLC–Q/TOF–MS combined with network pharmacology analysis vol.35, pp.12, 2021, https://doi.org/10.1002/bmc.5177