Dosimetric comparison for Prostate VMAT of weight and photon energy change

전립선 암 입체적세기변조방사선치료 시 체형 및 에너지 변화에 따른 선량 평가

  • Jo, Guang Sub (Department of Radiation Oncology, Gyeongsang National University Changwon Hospital) ;
  • Kim, Min Woo (Department of Radiation Oncology, Gyeongsang National University Changwon Hospital) ;
  • Baek, Min Gyu (Department of Radiation Oncology, Gyeongsang National University Changwon Hospital) ;
  • Chae, Jong Pyo (Department of Radiation Oncology, Gyeongsang National University Changwon Hospital) ;
  • Ha, Se Min (Department of Radiation Oncology, Gyeongsang National University Changwon Hospital) ;
  • Lee, Sang Bong (Department of Radiation Oncology, Gyeongsang National University Changwon Hospital)
  • 조광섭 (창원경상대학교병원 방사선종양학과) ;
  • 김민우 (창원경상대학교병원 방사선종양학과) ;
  • 백민규 (창원경상대학교병원 방사선종양학과) ;
  • 채종표 (창원경상대학교병원 방사선종양학과) ;
  • 하세민 (창원경상대학교병원 방사선종양학과) ;
  • 이상봉 (창원경상대학교병원 방사선종양학과)
  • Published : 2018.12.29

Abstract

Purpose : To compare the radiation doses of prostate cancer patients according to changes in abdominal body shape and energy during Volumetric modulated arc therapy(VMAT). Materials and Methods : Seven patients with prostate cancer were enrolled in this study. VMAT treatment plan was established at 6, 10, and 15 MV while changing from -2.0 cm to 2 cm by 0.5 cm. Conformal index(CI), homogeneous index(HI), $D_{max}$, $D_{95%}$, $D_{50%}$ and $D_{2%}$ of PTV were examined in order to evaluate the change of dose in the target organ according to body shape change. Normal organ of the femoral head, rectum and bladder was analyzed to evaluate dose changes. Results : The dose of $D_{max}$ 6 MV in PTV increased to 107.2 % in 1.0 cm body shape reduction, and 10 MV and 15 MV dose increased to 107.1 % and 107.0 % in 1.5 cm body reduction, respectively. The dose of $D_{50%}$ 6 MV in PTV decreased to 99.64 % in 1.0 cm body shape increase, and in 10 MV and 15 MV dose decreased to 99.79 % and 99.97 % in 1.5 cm body increase, respectively. In 2.0 cm body type increase, the dose was decreased to 99.30 % and 99.52 %, respectively. Doses for rectum and bladder gradually increased with decreasing weight, and dose decreased with decreasing weight. 6 MV, and $V_{70Gy}$ at 10 MV increased from 11.50 % to 12.76 % when the external shape decreased by 2.0 cm. The bladder $V_{70Gy}$ also increased from 14.0 % to 15.2 %. It was also shown that the dose increased as the body weight decreased in the femoral head. Conclusion : In the treatment of VMAT, dose distribution can be changed according to the change of abdominal shape. SSD and CBCT were used to decrease the body shape by more than 1cm or more than 1.0 cm at 6 MV and the body shape by more than 1.5 cm or more than 1.5 cm at 10 MV or 15 MV. It is considered that a new treatment plan should be established through re-simulation.

목 적 : 전립선 암 환자의 입체적세기변조방사선치료(VMAT)시 복부체형 및 에너지 변화에 따른 선량을 비교하였다. 대상 및 방법 : 전립선암으로 본원에 내원한 7명의 환자를 대상으로 하였으며, 복부체형을 -2.0 cm에서 2 cm까지 0.5 cm씩 변화시키는 동시에 6, 10, 15 MV 각각의 에너지에서 VMAT 치료계획을 수립하였다. 체형변화에 따른 표적장기 내 선량변화를 평가하기 위해 PTV의 선량도(Conformal index, CI), 선량균등도(Homogeneous index, HI), $D_{max}$ $D_{95%}$, $D_{50%}$, $D_{2%}$를 조사하였고, 정상조직 내 선량 변화를 평가하기 위해 직장과 방광의 $V_{70Gy}$, 대퇴부 머리의 $D_{max}$를 분석하였다. 결 과 : PTV 내의 $D_{max}$ 값 중 6 MV에서는 1.0 cm의 체형 감소에서 107.2 %로 선량이 상승하였고, 10 MV와 15 MV에서는 1.5 cm 체형 감소에서 각각 107.1 %, 107.0 %로 선량이 증가하였다. PTV 내의 $D_{50%}$ 값 중 6MV에서는 1.0 cm의 체형 증가에서 99.64 %로 선량이 감소하였고, 10 MV와 15 MV에서는 1.5 cm 체형 증가에서 각각 99.78 %, 99.97 %로 선량이 감소하였다. 2.0 cm 체형 증가에서는 각각 99.30 %, 99.52 %로 선량 감소를 보였다. 직장과 방광에 대한 선량은 체형이 감소됨에 따라 점차적으로 선량이 증가하였고, 체형이 증가됨에 따라 선량이 감소하였다. 6 MV에서 가장 급격한 선량 감소를 보였으며, 10 MV에서 직장 $V_{70Gy}$는 체형이 2.0 cm 줄어들 때 11.50 %에서 12.76 %로 증가했다. 방광 $V_{70Gy}$도 14.0 %에서 15.2 %로 증가했다. 또한 대퇴부 머리에서도 체형이 감소됨에 따라 선량이 증가함을 나타내었다. 결 론 : VMAT 치료시 복부체형 변화에 따라 선량분포 결과가 바뀔 수 있는데, 치료 시 SSD 및 CBCT를 이용하여 6 MV에서는 체형이 1 cm 이상 감소되거나 1.0 cm 이상 증가되었을 때, 10 MV와 15 MV에서는 1.5 cm 감소 또는 1.5 cm 증가되었을 시 re-simulation을 통해 치료계획을 새로 세워야 할 것으로 사료되어진다.

Keywords

References

  1. Park W. : Radiotherapy for prostate cancer. J. Korean Med Assoc : Vol. 58, No. 1, 2015;21-29 https://doi.org/10.5124/jkma.2015.58.1.21
  2. Zelefsky MJ, Leibe SA, Gaudin PB, et al. : Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J. Radiation Oncology Biol. Phys : Vol. 41, No. 3, 1998 ; 491-500 https://doi.org/10.1016/S0360-3016(98)00091-1
  3. Siegel RL, Miller MD, Jemal A. : Cancer Statistics 2017 : A Cancer Journal for Clinicians : Vol. 67, No. 1, ; 7-30
  4. D'Amico AV, Whittington RS, Malkowicz B, et al. : Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA : Vol. 280, No. 11 ; 969-974
  5. Intensity Modulated Radiation Therapy Collaborative Working Group : Intensity modulated radiotherapy Current Status and Issues of interest. Int J. Radiation Oncology Biol. Phys : Vol. 51 ; 880-917
  6. Zelefsky MJ, Fuks L, Happersett, et al. : Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiotherapy and Oncology : Vol. 55, No. 3 ; 241-249 https://doi.org/10.1016/S0167-8140(99)00100-0
  7. Ling CC, Burma, Cui CS, et al. : Conformal radiation treatment of prostate cancer using inverselyplanned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J. Radiation Oncology Biol. Phys : Vol. 32. 1996;721-730
  8. Zelefsky MJ, Kollmeier M, Cox B, et al. : Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer https://doi.org/10.1016/j.ijrobp.2011.11.047
  9. Nijkamp J. Pos FJ, Nuver TT, et al. : Adaptive radiotherapy for prostate cancer using kilovoltage conebeam computed tomography: first clinical results. Int J. Radiation Oncology Biol. Phys : Vol. 70, No. 1,;75-82
  10. Song, WY, Schaly B, Bauman G, et al. : Evaluation of image-guided radiation therapy (IGRT) technologies and their impact on the outcomes of hypofractionated prostate cancer treatments: a radiobiologic analysis : Int J. Radiation Oncology Biol. Phys : Vol. 64, No. 1;289-300
  11. Palma, Vollans DE, James K, et al. : Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy : Int J. Radiation Oncology Biol. Phys : Vol. 72, No. 4, ;996-1001
  12. Kim HS : Anticancer drug use and out-of-poket money burden in korean cancer patients: A questionnaire study. Korean journal of clinical pharmacy : Vol. 75, No. 3, 2009;703-710
  13. James, chow CL, Runqing Jiang. : Comparison of dosimetric variation between prostate IMRT and VMAT due to patient's weight loss: Patient and phantom study. Report of Practical oncology and radiotherapy : Vol. 18, 2013;272-278 https://doi.org/10.1016/j.rpor.2013.05.003
  14. Smith MR, Finkelstein JS, McGovern FJ, et al. : Changes in body composition during androgen deprivation therapy for prostate cancer Journal of Clinical Endocrinology and Metabolism : Vol. 87, No. 2 ; 599-603
  15. Marks LB, Yorke ED, Jackson, et al. : Use of normal tissue complication probability models in the clinic. International Journal of Radiation Oncology Biology Physics : Vol. 76, No. 3 ;S10-9
  16. Feuvret LG, Noel, JJ. Mazeron, et al. : Conformity index: a review. Int J. Radiation Oncology Biol. Phys : Vol. 64, No. 2 ;33-42
  17. Saenz DL, Paliwal BR, Bayouth JE. : A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans. Journal of Medical Physics : Vol. 39, No. 2 ;64-70
  18. ICRU, International Commission on Radiation Units and Measurements. Report 83 : Prescribing, Recording and Reporting Photon-Beam IMRT. Jurnal of the ICRU Vol. 10, No. 1 ;2010