DOI QR코드

DOI QR Code

탄성파 탐사 무선 수진기 특허동향 및 주요 기업의 기술 분석

Patent Trend and Characteristics of Major Companies in the Field of Seismic Nodal System

  • 박정규 (한국지질자원연구원 북방지질자원전략센터)
  • Park, Jung Kyu (Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2018.11.20
  • 심사 : 2018.12.20
  • 발행 : 2018.12.31

초록

본 연구는 탄성파 탐사 수진기의 특허동향을 분석하였다. 또한 수진기 제조사인 페어필드, 서셀, 와이어리스 사이스믹 등 3개 주요 기업의 탄성파 탐사 수진기 특허동향 및 핵심특허의 기술특징을 분석하여 각 기업의 기술개발 세부분야를 살펴보았다. 탄성파 수진기의 특허동향은 2000년 초 중반 이후로 출원 증가율이 지속적으로 높아지고 있으며 최근 더욱 높은 증가율을 보여 동 분야의 성장세를 확인하였다. 동 기간에 주요기업의 특허 출원증가율은 글로벌 동향보다 높게 나타났으며 특허침해소송 사례를 확인하여 동 분야의 활발한 시장경쟁을 확인하였다. 핵심특허 33건의 기술특징을 분석한 결과 주요기업은 대체로 탄성파 신호감지 분야에 집중하여 특허를 보유하는 것으로 나타났다. 세부기술은 자료획득의 신뢰도 향상, 자료전송 효율 향상, 무선수진기의 운용 시스템 개량기술 분야로 구분되었다. 시장이 성장하고 있는 동 분야의 기술개발 및 제조 관련 신규 진입자는 향후 발생할 수 있는 특허분쟁 또는 중복연구 등을 미연에 방지하기 위하여 주요 기업의 제품 및 특허의 청구항을 면밀하게 분석할 필요가 있겠다.

This study analyzed patent trends of seismic nodal systems and the technical characteristics of core patents of three major companies, including Fairfield, Sercel, and Wireless Seismic, to examine the focus of technology development of each company. From the analysis, the patent application growth rate of seismic nodal systems has steadily increased since early to mid-2000s and has recently shown a higher growth rate. Over the same period, the patent application growth rate of the three major companies examined was higher than that of the global trend, and patent infringement cases was also examined to evaluate market competition in this field. Analysis of the technical characteristics of the three companies' 33 core patents showed that they are generally focused on seismic signal detection. Sub-technologies included improved reliability of data acquisition, data transmission efficiency, and overall operating of the seismic nodal system. New entrants in field of technology development or manufacturing of seismic nodal systems where the market is growing must closely analyze the contents of major companies' products and patents to prevent possible patent disputes or duplicate research.

키워드

과제정보

연구 과제 주관 기관 : 한국에너지기술평가원(KETEP)

참고문헌

  1. Dean, T., O'Connell, K., and Quigley, J., 2013. A review of nodal land seismic acquisition systems. Preview, 164, 34-39.
  2. Freed, D., 2008. Cable-free nodes: The next generation land seismic system. The Leading Edge, 27, 878-881. https://doi.org/10.1190/1.2954027
  3. Fung, M. and Chow, W., 2002. Measuring the intensity of knowledge flow with patent statistics. Economics letters, 74(3), 353-358. https://doi.org/10.1016/S0165-1765(01)00558-4
  4. Hu, A. and Jaffe, A., 2003. Patent citations and international knowledge flow: the cases of Korea and Taiwan. International J. Industrial Organization, 21(6), 849-880. https://doi.org/10.1016/S0167-7187(03)00035-3
  5. Jaffe, A., Trajtenberg, M., and Fogarty, M., 2000. Knowledge spillovers and patent citations: Evidence from a survey of inventors. American Economic Review, 90(2), 215-218. https://doi.org/10.1257/aer.90.2.215
  6. LEAGLE, 2018. 11.15, https://www.leagle.com/decision/infdco20141027574.
  7. Lee, D.H., Kim B., and Jang S., 2016. Cable-free Seismic Acquisition System. Geophysics and Geophysical Exploration, 19(3), 164-173. https://doi.org/10.7582/GGE.2016.19.3.164
  8. Maurseth, P. and Verspagen, B., 2002. Knowledge spillovers in Europe: a patent citations analysis. The Scandinavian J. Economics, 104(4), 531-545. https://doi.org/10.1111/1467-9442.00300
  9. Park, J. and Heo, E., 2010. Analyzing the determinants of the patent quality in fuel cell and solar cell technology using count data models. J. Korea Technology Innovation Society, 13(2), 385-378.
  10. Park, J. and Lee D.J., 2015. Identifying promising technology in the geoscience and mineral resources engineering. Innovation Studies, 10(1), 1-19. https://doi.org/10.1097/imi.0000000000000127
  11. Park, J., 2011. Evidence on the Economic value of the Patent in Korea, Ph.D. Thesis, Seoul National University, Korea, 22p.
  12. U.S. Patent No. 6219620, 2001. Seismic acquisition system using wireless telemetry.
  13. U.S. Patent No. 6497149, 2000. Mobile plate accelerometer with electrostatic feedback, motor.
  14. U.S. Patent No. 6701133, 2000. Apparatus for and method of synchronising oscillators within a data communication system.
  15. U.S. Patent No. 7120087, 2003. Electronics-carrying module.
  16. U.S. Patent No. 7124028, 2003. Method and system for transmission of seismic data.
  17. U.S. Patent No. 7254093, 2004. Ocean bottom seismometer package with distributed geophones.
  18. U.S. Patent No. 7286442, 2005. Method and apparatus for seismic data acquisition.
  19. U.S. Patent No. 7292504, 2003. Seismic sensors.
  20. U.S. Patent No. 7612886, 2005. Fiber-optic seismic sensor.
  21. U.S. Patent No. 7730786, 2008. Seismic sensor providing a body and an insertion tip having at least two wings between which cavities extend, and corresponding insertion tip.
  22. U.S. Patent No. 7773457, 2006. Wireless exploration seismic system.
  23. U.S. Patent No. 7869444, 2005. Mixed wireless and cabled data acquisition network.
  24. U.S. Patent No. 7983847, 2006. Method and system for the transmission of seismic data.
  25. U.S. Patent No. 8228757, 2009. Synchronization of modules in a wireless array.
  26. U.S. Patent No. 8238198, 2010. Systems and methods for seismic data acquisition.
  27. U.S. Patent No. 8296068, 2011. Method for transmission of seismic data.
  28. U.S. Patent No. 8339899, 2009. Seismic data acquisition system comprising modules associated with units connected to sensors, the modules being autonomous with respect to power supply, synchronization and storage.
  29. U.S. Patent No. 8520587, 2005. Wireless data acquisition network.
  30. U.S. Patent No. 8547796, 2008. Seismic data recording.
  31. U.S. Patent No. 8599862, 2010. Data acquisition module and cable connector.
  32. U.S. Patent No. 8605543, 2007. Method and apparatus for correcting the timing function in a nodal seismic data acquisition unit.
  33. U.S. Patent No. 8611191, 2008. Land based unit for seismic data acquisition.
  34. U.S. Patent No. 8614928, 2011. Wireless data acquisition system and method using self-initializing wireless modules.
  35. U.S. Patent No. 9251983, 2013. Depth-activated sensor switch and method.
  36. U.S. Patent No. 9291729, 2012. Module for processing geophysical data comprising two connectors each forming one half-shell and being arranged to form a shell in which an electronic board is placed, connector and sub-assembly corresponding.
  37. U.S. Patent No. 9291730, 2012. Stress-relief device for geophysical equipment or node.
  38. U.S. Patent No. 9304218, 2013. Digital seismic sensor and acquisition device adapted to be connected together via a two-conductor line.
  39. U.S. Patent No. 9360575, 2013. Simultaneous shooting nodal acquisition seismic survey methods.
  40. U.S. Patent No. 9389324, 2013. Temperature compensation for seismic sensor and method.
  41. U.S. Patent No. 9465078, 2013. Battery capacity and durability prediction method.
  42. U.S. Patent No. 9494449, 2013. Coupling device for seismic sensors.
  43. U.S. Patent No. 9513388, 2014. Method for providing synchronization in a data acquisition system.
  44. U.S. Patent No. 9556694, 2014. Apparatus and method for a motorless seismic tool.
  45. U.S. Patent No. 9594175., 2014. Multimode seismic survey system.
  46. U.S. Patent No. 9599733, 2014. Method for collecting, in a harvester equipment distinct from a central unit, data coming from a plurality of seismic acquisition units.
  47. Yates, M. and Adiletta, S., 2013. Going nodal-Regional 3D seismic acquisition in Cook Inlet, Alaska. The Leading Edge, 32, 538-544. https://doi.org/10.1190/tle32050538.1

피인용 문헌

  1. A New Cable-Less Seismograph with Functions of Real-Time Data Transmitting and High-Precision Differential Self-Positioning vol.20, pp.14, 2018, https://doi.org/10.3390/s20144015
  2. Economic Impact Analysis on Industrialization of Land Nodal vol.57, pp.5, 2018, https://doi.org/10.32390/ksmer.2020.57.5.442