DOI QR코드

DOI QR Code

대심도 복층터널 화재연기 확산지연장치 설치간격 및 차폐율에 따른 화재연기 지연효과 연구

A Study on the Delay Effect of Smoke Diffusion by the Installation Intervals and the Blockage Ratio of the Fire Smoke Diffusion Delay Device in a Great Depth Underground Double-Deck Tunnel

  • 투고 : 2018.12.10
  • 심사 : 2018.12.20
  • 발행 : 2018.12.31

초록

국내 도심지의 도로는 차량수요 증가 및 부도심의 발달로 교통정체가 빈번히 발생되고 있다. 이를 해결하기 위한 방안으로 대심도 복층터널 시공을 위한 설계가 계획되고 있지만 주로 소형차전용으로써 터널높이가 낮고 단면이 작아 화재발생 시 인명피해가 발생될 가능성이 높다. 따라서 본 연구에서는 대심도 복층터널의 화재 시 인명피해 발생 최소화 방안으로 화재연기 확산지연장치 개발하였으며, 확산지연장치의 효과를 극대화할 수 있는 최적 설치간격 및 차폐율을 찾기 위해 3차원 전산수치해석(CFD)을 이용하여 Case Study를 수행하였다. 수행결과 확산지연장치의 설치간격이 짧을수록 지연효과가 높아졌지만 일정거리 이상에서는 효율변화가 미비한 경향이 발견되었고, 차폐율이 클수록 화재연기 지연효과가 높아지는 경향이 나타났지만, 차폐율이 작은 경우에는 설치간격에 따른 화재연기의 지연효과의 차이는 미소한 것으로 분석되었다.

The traffic congestion is frequently occurring due to increasing demand for vehicles and development of subcenter in roads of domestic-downtown. The design of a Great depth underground double-deck tunnel planned for construction as a solution however it's mainly for a compact-car. Its low height and small section cause causalities when fire occurs. From this study, the delay system for fire smoke diffusion is developed to minimize the occurrence of casualties when fire occurs in the Great depth underground double-deck tunnel and the CFD(Computational Fluid Dynamics) is used to find the optimal installation interval and the blockage ratio to maximize the system effects. The study analyzed the shorter the installation interval of the system, the higher the smoke delay effect but the efficiency-change tends to be slight above a certain distance and the larger the blockage ratio, the higher the effect but the efficiency-difference is slight according to installation interval.

키워드

과제정보

연구 과제번호 : 대심도 복층터널 설계 및 시공 기술개발

연구 과제 주관 기관 : 국토교통과학기술진흥원

참고문헌

  1. Statistics Korea, 2014. Population Projections by Province: 2013-2040 (Based on the Census), KOSTAT, Daejeon, Korea, 19p.
  2. Ministry of Land, Infrastructure and Transport, 2011. Road Design Manual, Vol.6, MOLIT, Sejong, Korea, 152p.
  3. Ministry of Land, Infrastructure and Transport, 2016. Guidelines for Installation and Management of Road Tunnel Disaster Prevention Facilities, MOLIT, Sejong, Korea, 79p.
  4. Yang, Y.W., Shin T.G., and Moon J.J., 2016. A research for preventing smoke diffusion in case of fire in great depth underground double-deck tunnel. The Korean Society of Mineral and Energy Resources Engineers magazine, 53(2), 158-163. https://doi.org/10.12972/ksmer.2016.53.2.158
  5. Yang, Y.W., Shin T.G., and Moon J.J., 2017. A research and development for the delay device against fire smoke diffusion in great depth underground double deck tunnels. The Korean Society of Mineral and Energy Resources Engineers Magazine, 54(2), 110-116. https://doi.org/10.12972/ksmer.2017.54.2.110
  6. Yang, Y.W., Shin T.G., Moon J.J., and Lee Y.T., 2018. A evaluation study of a fire smoke diffusion delay device installed in a great depth underground double deck tunnel. J. Korean Tunnelling and Underground Space Association, 20(1), 225-234.
  7. Yoo, J.O., Kim, H.G., and Oh, B.C., 2013. A numerical study on the characteristics of the smoke movement and the effects of structure in road tunnel fire. J. Korean Tunnelling and Underground Space Association, 15(3), 289-300. https://doi.org/10.9711/KTAJ.2013.15.3.289
  8. Seoul Metropolitan Goverment, 2014, 2030 Seoul City Basic Plan (2030 Seoul Plan), Seoul, Korea, p.160-161.
  9. Korea Institute of Civil Engineering and Building Technology, 2015, A Study on the Established Guidance for Design Guidelines in a great depth underground road Final Report of the Third Year, Goyang-si, Gyeonggi-do, 14p.