Acknowledgement
Supported by : 부경대학교
References
- J. Welzel, "Optical coherence tomography in dermatology : a review," Skin Research and Technology, Vol. 7, No. 1, pp. 1-9, 2001. https://doi.org/10.1034/j.1600-0846.2001.007001001.x
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet: classification with deep convolutional neural networks,", Proceedings of the 25th International Conference on Neural Information Processing Systems, pp. 1097-1105, 2012.
- S. J. Chiu, J. A. Izatt, R. V. O'Connell, K. P. Winter, C. A. Toth, and S. Farsiu, "Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images," Investigative Ophthalmology and Visual Science, vol. 53, no. 1, pp. 53-61, 2012. https://doi.org/10.1167/iovs.11-7640
- G. Lemaitre, M. Rastgoo, J. Massich, C. Y. Cheung, Y. Wong, E. Lamoureux, et al. "Classification of SD-OCT Volumes using local binary patterns: Experimental validation for DME detection," Journal of Ophthalmology, vol. 6, pp.1-16, 2016.
- Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. S. Schuman, and J. M. Rehg, "Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid with local binary patterns," Proceedings of Medical Image Computing and Computer-Assisted Intervention: MICCAI 2010, Springer, pp. 1-9, 2010.
- M. D. Abramoff, Y. Lou, and A. Erginay, "Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning," Investigative Ophthalmology and Visual Science, Vol. 57, No. 13, pp. 5200-5206, 2016. https://doi.org/10.1167/iovs.16-19964
- R. Asaoka, H. Murata, A. Iwase, M. Araie, "Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier," Ophthalmology. Vol. 123, No. 9, pp. 1974-1980, 2016. https://doi.org/10.1016/j.ophtha.2016.05.029
- S. Apostolopoulos, C. Ciller, S. De Zanet, S. Wolf, and R. Sznitman, "RetiNet: Automatic AMD identification in OCT volumetric data," arXiv:1610.03628, 2016.
- T. Schlegl, S. M. Waldstein, U. M. Schmidt-Erfurth, and G. Langs, "Predicting semantic descriptions from medical images with convolutional neural networks," Information Processing in Medical Imaging, Vol. 24, pp. 437-448, 2015.
- S. Cecilia, M. D. Lee, D. M. Baughman, and Y. Aaron, "Deep learning ls effective for classifying normal versus Age-Related Macular Degeneration Optical Coherence Tomography images", arXiv:1612.04891 2016.
- Oh-Heum Kwon, Yoo Jin Jung, and Ha-Joo Song, "AMD Identification from OCT Volume Data using Deep Convolutional Neural Networ," Journal of Korea Multimedia Society, Vol. 20, No. 8, pp. 1291-1298, 2017. https://doi.org/10.9717/kmms.2017.20.8.1291
- K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-scale Image Recognition," arXiv:1409.1556, 2014.
- S. Farsiu, S.J. Chiu, R.V. O'Connell, F.A. Folgar, E. Yuan, J.A. Izatt, et al., "Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography," Ophthalmology, Vol. 121, No. 1, pp. 162-172, 2014. https://doi.org/10.1016/j.ophtha.2013.07.013