Understanding Collaborative Tags and User Behavioral Patterns for Improving Recommendation Accuracy

추천 시스템 정확도 개선을 위한 협업태그와 사용자 행동패턴의 활용과 이해

  • 김일주 (명지대학교 융합소프트웨어학부)
  • Received : 2018.10.18
  • Accepted : 2018.12.14
  • Published : 2018.12.31

Abstract

Due to the ever expanding nature of the Web, separating more valuable information from the noisy data is getting more important. Although recommendation systems are widely used for addressing the information overloading issue, their performance does not seem meaningfully improved in currently suggested approaches. Hence, to investigate the issues, this study discusses different characteristics of popular, existing recommendation approaches, and proposes a new profiling technique that uses collaborative tags and test whether it successfully compensates the limitations of the existing approaches. In addition, the study also empirically evaluates rating/tagging patterns of users in various recommendation approaches, which include the proposed approach, to learn whether those patterns can be used as effective cues for improving the recommendations accuracy. Through the sensitivity analyses, this study also suggests the potential associated with a single recommendation system that applies multiple approaches for different users or items depending upon the types and contexts of recommendations.

웹상에서의 기하급수적으로 증가하는 정보의 양으로 인해, 중요하고 가치 있는 데이터를 변별 해 내는 작업은 그 어느 때보다도 중요하다고 하겠다. 추천 시스템은 이러한 정보의 과 공급 문제를 해결하기 위한 가장 효과적인 방법 중 하나임에도 불구하고, 그 성능은 기존 방식들에서 크게 진전을 이루지 못하고 있는 것이 사실이다. 따라서 본 논문에서는 이 문제를 진전시키기 위해, 협업태그를 활용한 새로운 사용자 프로파일링 기법을 제안하고 사용자의 평가 및 태깅패턴을 분석, 그 활용 또한 모색한다. 본 논문에서 제안하는 기법의 검증을 위해, 해당 프로파일링 기법을 활용 한 혼합 영화 추천 시스템을 구현하고 실제 데이터를 사용하여 기존의 추천 방식 대비 그 경쟁력을 검증하였다. 그와 더불어, 민감도 분석을 통해 사용자의 태깅패턴과 평가패턴에 기반한 차별적인 추천 방식의 잠재적 가능성 또한 제안, 검증한다.

Keywords

References

  1. Adomavicius, G., & Tuzhilin, A., "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions". IEEE Transactions on Knowledge and Data Engineering, vol. 17, No. 6. 2005
  2. Adomavicius, G., Kamireddy, S., & Kwon, Y., "Towards More Confident Recommendations: Improving Recommender Systems Using Filtering Approach Based on Rating Variance". 17thWorkshoponInformationTechnologiesandSystem s(WITS'07), December. 2007
  3. Balabanovic, M., & Shoham, Y., "Fab: Content-based, collaborative Recommendation". Communications of the ACM, Vol. 40, No. 3, 66-72. 1997 https://doi.org/10.1145/245108.245124
  4. Bell, R. M., Koren, Y., & Volinsky, C., "Modeling Relationships at Multiple Scales to Improve Accuracy of Large Recommender Systems". KDD'07, August 12-15, San Jose, California, USA. 2007
  5. Burke, R., "Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction", Volume 12, Issue 4. 2002
  6. Cantador, I., Bellogin, A., & Vallet, D., "Content-based Recommendation in Social Tagging Systems". Proceedings of RecSys'10, Sept 26-30, Barcelona, Spain. 2010
  7. Cheung, K. M., "Trend Takes to Keyword Tagging. Pew Internet & American Life Project", January. 2007
  8. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M., "Combining Content-Based and Collaborative Filters in an Online Newspaper". ACM SIGIR Workshop on Recommender System. 1999
  9. Cripe, B., "Folksonomy, Keywords, & Tags: Social & Democratic User Internet in Enterprise Content Management". An Oracle Business & Technology White Paper, July. 2007
  10. Golder, S. A., & Huberman, B. A., "The Structure of Collaborative Tagging Systems". Journal of Information Science. 2005
  11. Good, N., Schafer, J. B., Konstan, J. A., & Borchers, A., "Combining Collaborative Filtering with Personal Agents for Better Recommendations". AAAI. 1999
  12. Hayes, C., Avesani, P., & Veeramachaneni, S., "An Analysis of the Use of Tags in a Blog Recommender System". International Joint Conferences on Artificial Intelligence. 2007
  13. Herlocker, J. L., Konstan J. A., Terveen, L. G., & Riedl, J. T., "Evaluating collaborative filtering recommender systems". ACM Transactions on Information Systems (22:1), Jan. 2004
  14. Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J., "An Algorithmic Framework for Performing Collaborative Filtering". Proceedings of the 22nd A nnual International ACMSIGIR Conferenceon Research and Development in Information Retrieval, Berkeley, CA, 230-237. 1999
  15. [Hill, W., Stead, L., Rosenstein, M., & Furnas, G., "Recommending and evaluating choices in a virtual community of use". Proceedings of the ACM Conference on Human Factors in Computing Systems CHI'95, ACM Press, New York, 194-201. 1995
  16. Hornung, T., Koschmider, A., & Oberweis, A., "A Recommender System for Business Process Models". 17th Workshop on Information Technologies and Systems (WITS'07), December. 2007
  17. Htun, Z., & Tar, P. P., "A Resource Recommender Systems Based on Social Tagging Data". Machine Learning and Applications: An International Journal (MLAIJ), Vol. 1, No. 1, Sep. 2014
  18. Jin, R., Si, L., Zhai, C., & Callan, J., "Collaborative Filtering with Decoupled Models for Preferences and Ratings". CIKM '03, November 3-8, New Orleans, Louisiana, USA. 2003
  19. Kipp, M. E. I., & Campbell, D. G., "Patterns and Inconsistencies in Collaborative Tagging Systems: An Examination of Tagging Practices". Proceedings of American Society for Information Science and Technology, Vol. 43, Issue 1, Page 178. 2007
  20. Kittler, J., "Mathematical Methods of Feature Selection in Pattern Recognition". International Journal of Man-Machine Studies, Vol. 7, 609-637. 1975 https://doi.org/10.1016/S0020-7373(75)80023-X
  21. Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J., "GroupLens: Applying Collaborative Filtering to Usenet News". Communications of the ACM, Vol. 40, No. 3, 77-87. 1997 https://doi.org/10.1145/245108.245126
  22. Koschmider, A., & Oberweis, A., "Recommendation-Based Business Process Design". Handbook on Business Process Management 1, pp 323-336. 2014
  23. Krulwich, B., & Burkey, C., "Learning User Information Interests through Extraction of Semantically Significant Phrases". Proceedings of the AAAI Spring Symposium on Machine Learning in Information Access, Stanford, CA. 1996
  24. Lang, K., "Newsweeder: Learning to Filter Netnews". Proc. 12thInt'lConf.MachineLearning. 1995
  25. Linden, G., Smith, B., & York, J. "Amazon.com Recommendations: Item-to-Item Collaborative Filtering". IEEE Internet Computing, January/February. 2003
  26. Lynch, C., "Personalization and Recommender Systems in the Larger Context: New Directions and Research Questions". Proceedings of the 2ndDELOSNetworkofExcellenceWorkshoponPerson alizationandRecommenderSystemsinDigitalLibraries , Dublin, Ireland. 2001
  27. Maes, P., "Agents that Reduce Work and Information Overload", Communications of the ACM, Vol. 37, 31-40. 1994
  28. Marinho, L. B., Nanopoulos, A., Schmidt-Thieme, L., Jaschke, R., Hotho, A., Stumme, G., & Symeonidis, P., "Social Tagging Recommender Systems". Recommender Systems Handbook. 2011
  29. Melville, P., Mooney, R. J., & Nagarajan, R., "Content-Boosted Collaborative Filtering for Improved Recommendations". Proc. Of the Eighteenth National Conf. on AI. 2002
  30. Meteren, R. V., & Someren, M. V., "Using Content-Based Filtering for Recommendation". Machine Learning in the New Information Age, MLnet / ECML2000 Workshop, Spain. 2000
  31. Mooney, R. J., & Roy, L., "Content-Based Book Recommending Using Learning for Text Categorization". Proc. ACM SIGIR '99 Workshop Recommender Systems: Algorithms and Evaluation. 1999
  32. Netflix, Form 10-K Annual Report, January 29. 2018
  33. O'Reilly, T., "What Is Web 2.0, Design Patterns and Business Models for the Next Generation of Software". O'Reilly Network, September. 2005
  34. Parsons, J., Ralph, P., & Gallagher, K., "Using Viewing Time to Infer User Preference in Recommender Systems". AAAI Workshop on Semantic Web Personalization. 2004
  35. Pazzani, M. J., "A Framework for Collaborative, Content-Based and Demographic Filtering". Artificial Intelligence Review, Vol. 13, No. 5-6, 363-408. 1999
  36. Pazzani, M., Muramatsu, J., & Billsus, D., "Syskill & Webert: Identifying Interesting Web Sites". Proceedings of the 13th National Conference on Artificial Intelligence, Portland, OR, 54-61. 1996
  37. Peng, J., Zeng, D., Zhao, H., & Wang, F., "Collaborative Filtering in Social Tagging Systems Based on Joint Item-Tag Recommendations". Proceedings of the 19th ACM international conference on Information and knowledge management, Pages 809-818. 2010
  38. Rajaraman, A., "More Data Usually Beats Better Algorithms". Retrieved from http://anand.typepad.com/datawocky/2008/03/m ore-data-usual.html. 2008
  39. Ralph, P., & Parsons, J., "A Framework for Automatic Online Personalization". Proceedings of the 39th Hawaii International Conference on System Science. 2006
  40. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J., "GroupLens: An Open Architecture for Collaborative Filtering of Netnews". Proc. Of the Conference on Computer Supported Cooperative Work, Chapel Hill, NC, 175-186. 1994
  41. RMSE (n.d.). Retrieved from https://en.wikipedia.org/wiki/Root-mean-square_ deviation. August 28, 2018
  42. Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J., "Application of Dimensionality Reduction in Recommender Systems - A Case Study". ACM WebKDD Workshop. 2000
  43. Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J., "Item-Based Collaborative filtering Recommendation Algorithms". Proceedings of the 10thInternationalconferenceonWorldWideWeb, Hong Kong, 285-295. 2001
  44. Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J., "Recommender Systems for Large-scale E-Commerce: Scalable Neighborhood Formation Using Clustering". Proceedings of the Fifth International Conference on Computer and Information Technology. 2002
  45. Schafer, J.B., Konstan, J. A., & Riedl, J., "E-Commerce Recommendation Applications". Data Mining and Knowledge Discovery, Vol. 5, No. 1, 115-153. 2001 https://doi.org/10.1023/A:1009804230409
  46. Shepitsen, A., Gemmell, J., Mobasher, B., & Burke, R., "Personalized Recommendation in Social Tagging Systems Using Hierarchical Clustering". RecSys'08, October 23-25, Lausanne, Switzerland. 2008
  47. Shirky, C., "Ontology is Overrated: Categories, Links, and Tags". Retrieved from http://www.shirky.com/writings/ontology_overrate.html. 2006
  48. Silva, E., Camilo-Junior, C., Pascoal, L., & Rosa, T., "An Evolutionary Approach for Combining Results of Recommender Systems Techniques Based On Collaborative Filtering". Expert Systems With Applications, Vol. 53, Page 204-218. 2016 https://doi.org/10.1016/j.eswa.2015.12.050
  49. Tso-Sutter, K. H. L., Marinho, L. B., & Schmidt-Thieme, L., "Tag-aware Recommender Systems by Fusion of Collaborative Filtering Algorithms". SAC' 08, March 16-20, Fortaleza, Ceara, Brazil. 2008
  50. Wei, C., Shaw, M. J., & Easley, R. F., "A Survey of Recommendation Systems in Electronic Commerce. E-Service: New Directions in Theory and Practice". R. T. Rust and P. K. Kannes (Eds.), M. E. Sharpe Publisher. 2002
  51. Wu, H., Zubair, M., & Maly, K., "Harvesting Social Knowledge from Folksonomies". HT '06, Odense, Denmark, August 22-25. 2006
  52. Yang, Y., & Chute, C. G., "An Example-Based Mapping Method for Text Categorization and Retrieval". ACM Transactions on Information Systems, Vol. 12, No. 3, 252-277. 1994 https://doi.org/10.1145/183422.183424
  53. Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., & Fu, R., "Improved Recommendation based on Collaborative Tagging Behaviors". IUI' 08, January 13-16, Masplomas, Gran Canaria, Spain. 2008