References
- Adomavicius, G., & Tuzhilin, A., "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions". IEEE Transactions on Knowledge and Data Engineering, vol. 17, No. 6. 2005
- Adomavicius, G., Kamireddy, S., & Kwon, Y., "Towards More Confident Recommendations: Improving Recommender Systems Using Filtering Approach Based on Rating Variance". 17thWorkshoponInformationTechnologiesandSystem s(WITS'07), December. 2007
- Balabanovic, M., & Shoham, Y., "Fab: Content-based, collaborative Recommendation". Communications of the ACM, Vol. 40, No. 3, 66-72. 1997 https://doi.org/10.1145/245108.245124
- Bell, R. M., Koren, Y., & Volinsky, C., "Modeling Relationships at Multiple Scales to Improve Accuracy of Large Recommender Systems". KDD'07, August 12-15, San Jose, California, USA. 2007
- Burke, R., "Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction", Volume 12, Issue 4. 2002
- Cantador, I., Bellogin, A., & Vallet, D., "Content-based Recommendation in Social Tagging Systems". Proceedings of RecSys'10, Sept 26-30, Barcelona, Spain. 2010
- Cheung, K. M., "Trend Takes to Keyword Tagging. Pew Internet & American Life Project", January. 2007
- Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M., "Combining Content-Based and Collaborative Filters in an Online Newspaper". ACM SIGIR Workshop on Recommender System. 1999
- Cripe, B., "Folksonomy, Keywords, & Tags: Social & Democratic User Internet in Enterprise Content Management". An Oracle Business & Technology White Paper, July. 2007
- Golder, S. A., & Huberman, B. A., "The Structure of Collaborative Tagging Systems". Journal of Information Science. 2005
- Good, N., Schafer, J. B., Konstan, J. A., & Borchers, A., "Combining Collaborative Filtering with Personal Agents for Better Recommendations". AAAI. 1999
- Hayes, C., Avesani, P., & Veeramachaneni, S., "An Analysis of the Use of Tags in a Blog Recommender System". International Joint Conferences on Artificial Intelligence. 2007
- Herlocker, J. L., Konstan J. A., Terveen, L. G., & Riedl, J. T., "Evaluating collaborative filtering recommender systems". ACM Transactions on Information Systems (22:1), Jan. 2004
- Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J., "An Algorithmic Framework for Performing Collaborative Filtering". Proceedings of the 22nd A nnual International ACMSIGIR Conferenceon Research and Development in Information Retrieval, Berkeley, CA, 230-237. 1999
- [Hill, W., Stead, L., Rosenstein, M., & Furnas, G., "Recommending and evaluating choices in a virtual community of use". Proceedings of the ACM Conference on Human Factors in Computing Systems CHI'95, ACM Press, New York, 194-201. 1995
- Hornung, T., Koschmider, A., & Oberweis, A., "A Recommender System for Business Process Models". 17th Workshop on Information Technologies and Systems (WITS'07), December. 2007
- Htun, Z., & Tar, P. P., "A Resource Recommender Systems Based on Social Tagging Data". Machine Learning and Applications: An International Journal (MLAIJ), Vol. 1, No. 1, Sep. 2014
- Jin, R., Si, L., Zhai, C., & Callan, J., "Collaborative Filtering with Decoupled Models for Preferences and Ratings". CIKM '03, November 3-8, New Orleans, Louisiana, USA. 2003
- Kipp, M. E. I., & Campbell, D. G., "Patterns and Inconsistencies in Collaborative Tagging Systems: An Examination of Tagging Practices". Proceedings of American Society for Information Science and Technology, Vol. 43, Issue 1, Page 178. 2007
- Kittler, J., "Mathematical Methods of Feature Selection in Pattern Recognition". International Journal of Man-Machine Studies, Vol. 7, 609-637. 1975 https://doi.org/10.1016/S0020-7373(75)80023-X
- Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J., "GroupLens: Applying Collaborative Filtering to Usenet News". Communications of the ACM, Vol. 40, No. 3, 77-87. 1997 https://doi.org/10.1145/245108.245126
- Koschmider, A., & Oberweis, A., "Recommendation-Based Business Process Design". Handbook on Business Process Management 1, pp 323-336. 2014
- Krulwich, B., & Burkey, C., "Learning User Information Interests through Extraction of Semantically Significant Phrases". Proceedings of the AAAI Spring Symposium on Machine Learning in Information Access, Stanford, CA. 1996
- Lang, K., "Newsweeder: Learning to Filter Netnews". Proc. 12thInt'lConf.MachineLearning. 1995
- Linden, G., Smith, B., & York, J. "Amazon.com Recommendations: Item-to-Item Collaborative Filtering". IEEE Internet Computing, January/February. 2003
- Lynch, C., "Personalization and Recommender Systems in the Larger Context: New Directions and Research Questions". Proceedings of the 2ndDELOSNetworkofExcellenceWorkshoponPerson alizationandRecommenderSystemsinDigitalLibraries , Dublin, Ireland. 2001
- Maes, P., "Agents that Reduce Work and Information Overload", Communications of the ACM, Vol. 37, 31-40. 1994
- Marinho, L. B., Nanopoulos, A., Schmidt-Thieme, L., Jaschke, R., Hotho, A., Stumme, G., & Symeonidis, P., "Social Tagging Recommender Systems". Recommender Systems Handbook. 2011
- Melville, P., Mooney, R. J., & Nagarajan, R., "Content-Boosted Collaborative Filtering for Improved Recommendations". Proc. Of the Eighteenth National Conf. on AI. 2002
- Meteren, R. V., & Someren, M. V., "Using Content-Based Filtering for Recommendation". Machine Learning in the New Information Age, MLnet / ECML2000 Workshop, Spain. 2000
- Mooney, R. J., & Roy, L., "Content-Based Book Recommending Using Learning for Text Categorization". Proc. ACM SIGIR '99 Workshop Recommender Systems: Algorithms and Evaluation. 1999
- Netflix, Form 10-K Annual Report, January 29. 2018
- O'Reilly, T., "What Is Web 2.0, Design Patterns and Business Models for the Next Generation of Software". O'Reilly Network, September. 2005
- Parsons, J., Ralph, P., & Gallagher, K., "Using Viewing Time to Infer User Preference in Recommender Systems". AAAI Workshop on Semantic Web Personalization. 2004
- Pazzani, M. J., "A Framework for Collaborative, Content-Based and Demographic Filtering". Artificial Intelligence Review, Vol. 13, No. 5-6, 363-408. 1999
- Pazzani, M., Muramatsu, J., & Billsus, D., "Syskill & Webert: Identifying Interesting Web Sites". Proceedings of the 13th National Conference on Artificial Intelligence, Portland, OR, 54-61. 1996
- Peng, J., Zeng, D., Zhao, H., & Wang, F., "Collaborative Filtering in Social Tagging Systems Based on Joint Item-Tag Recommendations". Proceedings of the 19th ACM international conference on Information and knowledge management, Pages 809-818. 2010
- Rajaraman, A., "More Data Usually Beats Better Algorithms". Retrieved from http://anand.typepad.com/datawocky/2008/03/m ore-data-usual.html. 2008
- Ralph, P., & Parsons, J., "A Framework for Automatic Online Personalization". Proceedings of the 39th Hawaii International Conference on System Science. 2006
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J., "GroupLens: An Open Architecture for Collaborative Filtering of Netnews". Proc. Of the Conference on Computer Supported Cooperative Work, Chapel Hill, NC, 175-186. 1994
- RMSE (n.d.). Retrieved from https://en.wikipedia.org/wiki/Root-mean-square_ deviation. August 28, 2018
- Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J., "Application of Dimensionality Reduction in Recommender Systems - A Case Study". ACM WebKDD Workshop. 2000
- Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J., "Item-Based Collaborative filtering Recommendation Algorithms". Proceedings of the 10thInternationalconferenceonWorldWideWeb, Hong Kong, 285-295. 2001
- Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J., "Recommender Systems for Large-scale E-Commerce: Scalable Neighborhood Formation Using Clustering". Proceedings of the Fifth International Conference on Computer and Information Technology. 2002
- Schafer, J.B., Konstan, J. A., & Riedl, J., "E-Commerce Recommendation Applications". Data Mining and Knowledge Discovery, Vol. 5, No. 1, 115-153. 2001 https://doi.org/10.1023/A:1009804230409
- Shepitsen, A., Gemmell, J., Mobasher, B., & Burke, R., "Personalized Recommendation in Social Tagging Systems Using Hierarchical Clustering". RecSys'08, October 23-25, Lausanne, Switzerland. 2008
- Shirky, C., "Ontology is Overrated: Categories, Links, and Tags". Retrieved from http://www.shirky.com/writings/ontology_overrate.html. 2006
- Silva, E., Camilo-Junior, C., Pascoal, L., & Rosa, T., "An Evolutionary Approach for Combining Results of Recommender Systems Techniques Based On Collaborative Filtering". Expert Systems With Applications, Vol. 53, Page 204-218. 2016 https://doi.org/10.1016/j.eswa.2015.12.050
- Tso-Sutter, K. H. L., Marinho, L. B., & Schmidt-Thieme, L., "Tag-aware Recommender Systems by Fusion of Collaborative Filtering Algorithms". SAC' 08, March 16-20, Fortaleza, Ceara, Brazil. 2008
- Wei, C., Shaw, M. J., & Easley, R. F., "A Survey of Recommendation Systems in Electronic Commerce. E-Service: New Directions in Theory and Practice". R. T. Rust and P. K. Kannes (Eds.), M. E. Sharpe Publisher. 2002
- Wu, H., Zubair, M., & Maly, K., "Harvesting Social Knowledge from Folksonomies". HT '06, Odense, Denmark, August 22-25. 2006
- Yang, Y., & Chute, C. G., "An Example-Based Mapping Method for Text Categorization and Retrieval". ACM Transactions on Information Systems, Vol. 12, No. 3, 252-277. 1994 https://doi.org/10.1145/183422.183424
- Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., & Fu, R., "Improved Recommendation based on Collaborative Tagging Behaviors". IUI' 08, January 13-16, Masplomas, Gran Canaria, Spain. 2008