DOI QR코드

DOI QR Code

Mouse models of breast cancer in preclinical research

  • Park, Mi Kyung (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy) ;
  • Lee, Chang Hoon (College of Pharmacy, Dongguk University) ;
  • Lee, Ho (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy)
  • Received : 2018.11.29
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

Breast cancer remains the second leading cause of cancer death among woman, worldwide, despite advances in identifying novel targeted therapies and the development of treating strategies. Classification of clinical subtypes (ER+, PR+, HER2+, and TNBC (Triple-negative)) increases the complexity of breast cancers, which thus necessitates further investigation. Mouse models used in breast cancer research provide an essential approach to examine the mechanisms and genetic pathway in cancer progression and metastasis and to develop and evaluate clinical therapeutics. In this review, we summarize tumor transplantation models and genetically engineered mouse models (GEMMs) of breast cancer and their applications in the field of human breast cancer research and anti-cancer drug development. These models may help to improve the knowledge of underlying mechanisms and genetic pathways, as well as creating approaches for modeling clinical tumor subtypes, and developing innovative cancer therapy.

Keywords

Acknowledgement

Supported by : National Cancer Center

References

  1. Kweon SS. Updates on Cancer Epidemiology in Korea, 2018. Chonnam Med J 2018; 54(2): 90-100. https://doi.org/10.4068/cmj.2018.54.2.90
  2. Jung KW, Won YJ, Kong HJ, Lee ES; Community of Population-Based Regional Cancer Registries. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2015. Cancer Res Treat 2018; 50(2): 303-316. https://doi.org/10.4143/crt.2018.143
  3. Althuis MD, Dozier JM, Anderson WF, Devesa SS, Brinton LA. Global trends in breast cancer incidence and mortality 1973-1997. Int J Epidemiol 2005; 34(2): 405-412. https://doi.org/10.1093/ije/dyh414
  4. Kim IS, Baek SH. Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 2010; 394(3): 443-447. https://doi.org/10.1016/j.bbrc.2010.03.070
  5. Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-752. https://doi.org/10.1038/35021093
  6. Cardiff RD, Kenney N. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice. Cold Spring Harb Perspect Biol 2011; 3(6).
  7. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001; 98(19): 10869-10874. https://doi.org/10.1073/pnas.191367098
  8. Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011; 62: 233-247. https://doi.org/10.1146/annurev-med-070909-182917
  9. Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ. Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 2014; 382(1): 695-723. https://doi.org/10.1016/j.mce.2013.08.001
  10. Luque-Cabal M, Garcia-Teijido P, Fernandez-Perez Y, Sanchez-Lorenzo L, Palacio-Vazquez I. Mechanisms Behind the Resistance to Trastuzumab in HER2-Amplified Breast Cancer and Strategies to Overcome It. Clin Med Insights Oncol 2016; 10(Suppl 1): 21-30.
  11. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A, Heeson S, Clark E, Ross G, Benyunes MC, Cortes J; CLEOPATRA Study Group. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 2015; 372(8): 724-734. https://doi.org/10.1056/NEJMoa1413513
  12. Fan W, Chang J, Fu P. Endocrine therapy resistance in breast cancer: current status, possible mechanisms and overcoming strategies. Future Med Chem 2015; 7(12): 1511-1519. https://doi.org/10.4155/fmc.15.93
  13. Palomeras S, Ruiz-Martinez S, Puig T. Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance. Molecules 2018; 23(9).
  14. Cho SY, Kang W, Han JY, Min S, Kang J, Lee A, Kwon JY, Lee C, Park H. An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts. Mol Cells Mol Cells Mol Cells 2016; 39(2): 77-86.
  15. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to "Nude" mice. Acta Pathol Microbiol Scand 1969; 77(4): 758-760. https://doi.org/10.1111/j.1699-0463.1969.tb04520.x
  16. Zhang Y, Zhang GL, Sun X, Cao KX, Ma C, Nan N, Yang GW, Yu MW, Wang XM. Establishment of a murine breast tumor model by subcutaneous or orthotopic implantation. Oncol Lett 2018; 15(5): 6233-6240.
  17. Ding H, Quan H, Yan W, Han J. Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells. Biosci Rep 2016.
  18. Xiao X, Chen B, Liu X, Liu P, Zheng G, Ye F, Tang H, Xie X. Diallyl disulfide suppresses SRC/Ras/ERK signaling-mediated proliferation and metastasis in human breast cancer by upregulating miR-34a. PLoS One 2014; 9(11): e112720. https://doi.org/10.1371/journal.pone.0112720
  19. Tang H, Liu P, Yang L, Xie X, Ye F, Wu M, Liu X, Chen B, Zhang L, Xie X. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther 2014; 13(12): 3185-3197. https://doi.org/10.1158/1535-7163.MCT-14-0243
  20. Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res 2011; 13(4): 215. https://doi.org/10.1186/bcr2889
  21. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 1999; 17(4): 343-359. https://doi.org/10.1023/A:1006326203858
  22. Borges S, Perez EA, Thompson EA, Radisky DC, Geiger XJ, Storz P. Effective Targeting of Estrogen Receptor-Negative Breast Cancers with the Protein Kinase D Inhibitor CRT0066101. Mol Cancer Ther 2015; 14(6): 1306-1316. https://doi.org/10.1158/1535-7163.MCT-14-0945
  23. Zhang C, Yan Z, Arango ME, Painter CL, Anderes K. Advancing bioluminescence imaging technology for the evaluation of anticancer agents in the MDA-MB-435-HAL-Luc mammary fat pad and subrenal capsule tumor models. Clin Cancer Res 2009; 15(1): 238-246. https://doi.org/10.1158/1078-0432.CCR-08-0897
  24. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52(6): 1399-1405.
  25. Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D'Amato NC, Spoelstra NS, Edgerton SM, Jean A, Guerrero J, Gomez F, Medicherla S, Alfaro IE, McCullagh E, Jedlicka P, Torkko KC, Thor AD, Elias AD, Protter AA, Richer JK. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res 2014; 16(1): R7. https://doi.org/10.1186/bcr3599
  26. Cerliani JP, Guillardoy T, Giulianelli S, Vaque JP, Gutkind JS, Vanzulli SI, Martins R, Zeitlin E, Lamb CA, Lanari C. Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer. Cancer Res 2011; 71(10): 3720-3731. https://doi.org/10.1158/0008-5472.CAN-10-3074
  27. Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patientderived xenograft models of breast cancer and their predictive power. Breast Cancer Res 2015; 17: 17. https://doi.org/10.1186/s13058-015-0523-1
  28. Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer 2015; 15(8): 451-452. https://doi.org/10.1038/nrc3972
  29. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 2014; 4(9): 998-1013. https://doi.org/10.1158/2159-8290.CD-14-0001
  30. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y, Balbin OA, Barbe S, Cai H, Casey F, Chatterjee S, Chiang DY, Chuai S, Cogan SM, Collins SD, Dammassa E, Ebel N, Embry M, Green J, Kauffmann A, Kowal C, Leary RJ, Lehar J, Liang Y, Loo A, Lorenzana E, Robert McDonald E 3rd, McLaughlin ME, Merkin J, Meyer R, Naylor TL, Patawaran M, Reddy A, Roelli C, Ruddy DA, Salangsang F, Santacroce F, Singh AP, Tang Y, Tinetto W, Tobler S, Velazquez R, Venkatesan K, Von Arx F, Wang HQ, Wang Z, Wiesmann M, Wyss D, Xu F, Bitter H, Atadja P, Lees E, Hofmann F, Li E, Keen N, Cozens R, Jensen MR, Pryer NK, Williams JA, Sellers WR. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 2015; 21(11): 1318-1325. https://doi.org/10.1038/nm.3954
  31. Kopetz S, Lemos R, Powis G. The promise of patient-derived xenografts: the best laid plans of mice and men. Clin Cancer Res 2012; 18(19): 5160-5162. https://doi.org/10.1158/1078-0432.CCR-12-2408
  32. Rosfjord E, Lucas J, Li G, Gerber HP. Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol 2014; 91(2): 135-143. https://doi.org/10.1016/j.bcp.2014.06.008
  33. Pillai SG, Li S, Siddappa CM, Ellis MJ, Watson MA, Aft R. Identifying biomarkers of breast cancer micrometastatic disease in bone marrow using a patient-derived xenograft mouse model. Breast Cancer Res 2018; 20(1): 2. https://doi.org/10.1186/s13058-017-0927-1
  34. Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, Villaroel MC, Salomon A, Taylor G, Sharma R, Hruban RH, Maitra A, Laheru D, Rubio-Viqueira B, Jimeno A, Hidalgo M. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res 2011; 17(17): 5793-5800. https://doi.org/10.1158/1078-0432.CCR-11-0341
  35. Rashid OM, Takabe K. Animal models for exploring the pharmacokinetics of breast cancer therapies. Expert Opin Drug Metab Toxicol 2015; 11(2): 221-230. https://doi.org/10.1517/17425255.2015.983073
  36. Singh M, Ramos I, Asafu-Adjei D, Quispe-Tintaya W, Chandra D, Jahangir A, Zang X, Aggarwal BB, Gravekamp C. Curcumin improves the therapeutic efficacy of Listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triplenegative breast cancer model 4T1. Cancer Med 2013; 2(4): 571-582. https://doi.org/10.1002/cam4.94
  37. Takahashi K, Nagai N, Ogura K, Tsuneyama K, Saiki I, Irimura T, Hayakawa Y. Mammary tissue microenvironment determines T cell-dependent breast cancer-associated inflammation. Cancer Sci 2015; 106(7): 867-874. https://doi.org/10.1111/cas.12685
  38. Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 2008; 8: 228. https://doi.org/10.1186/1471-2407-8-228
  39. Zhou H, Roy S, Cochran E, Zouaoui R, Chu CL, Duffner J, Zhao G, Smith S, Galcheva-Gargova Z, Karlgren J, Dussault N, Kwan RY, Moy E, Barnes M, Long A, Honan C, Qi YW, Shriver Z, Ganguly T, Schultes B, Venkataraman G, Kishimoto TK. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS One 2011; 6(6): e21106. https://doi.org/10.1371/journal.pone.0021106
  40. Hanahan D, Wagner EF, Palmiter RD. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 2007; 21(18): 2258-2270. https://doi.org/10.1101/gad.1583307
  41. Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 2000; 19(8): 968-988. https://doi.org/10.1038/sj.onc.1203277
  42. Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T, Kai F, Taneja NK, Inoue K. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 2009; 9(5): 423-440. https://doi.org/10.1586/erm.09.31
  43. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 2009; 21(2): 177-184. https://doi.org/10.1016/j.ceb.2008.12.010
  44. Park JW, Neve RM, Szollosi J, Benz CC. Unraveling the biologic and clinical complexities of HER2. Clin Breast Cancer 2008; 8(5): 392-401. https://doi.org/10.3816/CBC.2008.n.047
  45. Allred DC, Clark GM, Molina R, Tandon AK, Schnitt SJ, Gilchrist KW, Osborne CK, Tormey DC, McGuire WL. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 1992; 23(9): 974-979. https://doi.org/10.1016/0046-8177(92)90257-4
  46. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12(3): 954-961. https://doi.org/10.1128/MCB.12.3.954
  47. Guy CT, Cardiff RD, Muller WJ. Activated neu induces rapid tumor progression. J Biol Chem 1996; 271(13): 7673-7678. https://doi.org/10.1074/jbc.271.13.7673
  48. Hwang TS, Han HS, Hong YC, Lee HJ, Paik NS. Prognostic value of combined analysis of cyclin D1 and estrogen receptor status in breast cancer patients. Pathol Int 2003; 53(2): 74-80. https://doi.org/10.1046/j.1440-1827.2003.01441.x
  49. Sutherland RL, Musgrove EA. Cyclins and breast cancer. J Mammary Gland Biol Neoplasia 2004; 9(1): 95-104. https://doi.org/10.1023/B:JOMG.0000023591.45568.77
  50. Maroulakou IG, Anver M, Garrett L, Green JE. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci U S A 1994; 91(23): 11236-11240. https://doi.org/10.1073/pnas.91.23.11236
  51. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8(5): R76. https://doi.org/10.1186/gb-2007-8-5-r76
  52. Ozturk-Winder F, Renner M, Klein D, Muller M, Salmons B, Gunzburg WH. The murine whey acidic protein promoter directs expression to human mammary tumors after retroviral transduction. Cancer Gene Ther 2002; 9(5): 421-431. https://doi.org/10.1038/sj.cgt.7700456
  53. Nielsen LL, Discafani CM, Gurnani M, Tyler RD. Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Res 1991; 51(14): 3762-3767.
  54. Liby K, Neltner B, Mohamet L, Menchen L, Ben-Jonathan N. Prolactin overexpression by MDA-MB-435 human breast cancer cells accelerates tumor growth. Breast Cancer Res Treat 2003; 79(2): 241-252. https://doi.org/10.1023/A:1023956223037
  55. Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J, Quadt C, Buckler A, Cozens R, Drysdale MJ, Garcia-Echeverria C, Chene P. NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 2008; 10(2): R33. https://doi.org/10.1186/bcr1996
  56. Zhang T, Chen Y, Li J, Yang F, Wu H, Dai F, Hu M, Lu X, Peng Y, Liu M, Zhao Y, Yi Z. Antitumor action of a novel histone deacetylase inhibitor, YF479, in breast cancer. Neoplasia 2014; 16(8): 665-677. https://doi.org/10.1016/j.neo.2014.07.009
  57. Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M. A mouse model of human breast cancer metastasis to human bone. Cancer Res 2005; 65(14): 6130-6138. https://doi.org/10.1158/0008-5472.CAN-04-1408
  58. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L, Guyader C, De Pinieux G, Judde JG, Rebucci M, Tran-Perennou C, Sastre-Garau X, Sigal-Zafrani B, Delattre O, Dieras V, Poupon MF. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 2007; 13(13): 3989-3998. https://doi.org/10.1158/1078-0432.CCR-07-0078
  59. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 2011; 17(11): 1514-1520. https://doi.org/10.1038/nm.2454
  60. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, Wong H, Fuqua SW, Contreras A, Gutierrez C, Huang J, Mao S, Pavlick AC, Froehlich AM, Wu MF, Tsimelzon A, Hilsenbeck SG, Chen ES, Zuloaga P, Shaw CA, Rimawi MF, Perou CM, Mills GB, Chang JC, Lewis MT. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 2013; 73(15): 4885-4897. https://doi.org/10.1158/0008-5472.CAN-12-4081
  61. Charafe-Jauffret E, Ginestier C, Bertucci F, Cabaud O, Wicinski J, Finetti P, Josselin E, Adelaide J, Nguyen TT, Monville F, Jacquemier J, Thomassin-Piana J, Pinna G, Jalaguier A, Lambaudie E, Houvenaeghel G, Xerri L, Harel-Bellan A, Chaffanet M, Viens P, Birnbaum D. ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res 2013; 73(24): 7290-7300. https://doi.org/10.1158/0008-5472.CAN-12-4704
  62. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Singlestep induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54(1): 105-115. https://doi.org/10.1016/0092-8674(88)90184-5
  63. Almholt K, Lund LR, Rygaard J, Nielsen BS, Dano K, Romer J, Johnsen M. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 2005; 113(4): 525-532. https://doi.org/10.1002/ijc.20631
  64. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 1994; 369(6482): 669-671. https://doi.org/10.1038/369669a0
  65. Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 1984; 38(3): 627-637. https://doi.org/10.1016/0092-8674(84)90257-5
  66. Li Y, Hively WP, Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 2000; 19(8): 1002-1009. https://doi.org/10.1038/sj.onc.1203273

Cited by

  1. Indocyanine Green-Coated Gold Nanoclusters for Photoacoustic Imaging and Photothermal Therapy vol.2, pp.9, 2018, https://doi.org/10.1002/adtp.201900088
  2. Breast cancer animal models and applications vol.41, pp.5, 2020, https://doi.org/10.24272/j.issn.2095-8137.2020.095
  3. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer vol.39, pp.1, 2018, https://doi.org/10.1186/s13046-020-01694-9
  4. Fabrication and Characterization of Tumor Nano-Lysate as a Preventative Vaccine for Breast Cancer vol.36, pp.23, 2020, https://doi.org/10.1021/acs.langmuir.0c00947
  5. miR-205: A Potential Biomedicine for Cancer Therapy vol.9, pp.9, 2018, https://doi.org/10.3390/cells9091957
  6. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer vol.6, pp.3, 2020, https://doi.org/10.3390/ncrna6030029
  7. Experimental Models as Refined Translational Tools for Breast Cancer Research vol.88, pp.3, 2018, https://doi.org/10.3390/scipharm88030032
  8. Anti gC1qR/p32/HABP1 Antibody Therapy Decreases Tumor Growth in an Orthotopic Murine Xenotransplant Model of Triple Negative Breast Cancer vol.9, pp.4, 2020, https://doi.org/10.3390/antib9040051
  9. A Step Forward in Breast Cancer Research: From a Natural-Like Experimental Model to a Preliminary Photothermal Approach vol.21, pp.24, 2018, https://doi.org/10.3390/ijms21249681
  10. Combined Ultrasound Treatment with Transferrin-Coupled Nanoparticles Improves Active Targeting of 4T1 Mammary Carcinoma Cells vol.20, pp.None, 2021, https://doi.org/10.1177/15330338211062325
  11. Modeling Heterogeneity of Triple‐Negative Breast Cancer Uncovers a Novel Combinatorial Treatment Overcoming Primary Drug Resistance vol.8, pp.3, 2021, https://doi.org/10.1002/advs.202003049
  12. Breast Cancer Promotes Cardiac Dysfunction Through Deregulation of Cardiomyocyte Ca 2+ ‐Handling Protein Expression That is Not Reversed by Exercise Training vol.10, pp.5, 2021, https://doi.org/10.1161/jaha.120.018076
  13. The past, present, and future of breast cancer models for nanomedicine development vol.173, pp.None, 2018, https://doi.org/10.1016/j.addr.2021.03.018
  14. Hyperspectral-enhanced dark field analysis of individual and collective photo-responsive gold-copper sulfide nanoparticles vol.13, pp.31, 2018, https://doi.org/10.1039/d0nr08256b
  15. Radiation dose estimation for pencil beam X-ray luminescence computed tomography imaging vol.29, pp.5, 2021, https://doi.org/10.3233/xst-210904
  16. VISTA Is a Diagnostic Biomarker and Immunotherapy Target of Aggressive Feline Mammary Carcinoma Subtypes vol.13, pp.21, 2018, https://doi.org/10.3390/cancers13215559
  17. An avian embryo patient-derived xenograft model for preclinical studies of human breast cancers vol.24, pp.12, 2018, https://doi.org/10.1016/j.isci.2021.103423
  18. Combining losartan with radiotherapy increases tumor control and inhibits lung metastases from a HER2/neu-positive orthotopic breast cancer model vol.16, pp.1, 2018, https://doi.org/10.1186/s13014-021-01775-9