DOI QR코드

DOI QR Code

토픽모델링을 활용한 실내환경 분야 연구동향 파악 : 실내환경학회지 초록 사례연구

An analysis of indoor environment research trends in Korea using topic modeling : Case study on abstracts from the journal of the Korean society for indoor environment

  • 전형진 (한국환경정책평가연구원) ;
  • 김도연 (한국환경정책평가연구원) ;
  • 한국진 (한국환경정책평가연구원) ;
  • 김동우 (한국환경정책평가연구원) ;
  • 손승우 (한국환경정책평가연구원) ;
  • 이철민 (서경대학교 화학생명공학과)
  • 투고 : 2018.10.15
  • 심사 : 2018.11.07
  • 발행 : 2018.12.31

초록

The objective of this study is to identify the research trend in the field of indoor environment in Korea. We collected 419 papers published in the Journal of the Korean Society for indoor environment between 2004 and 2018, and attempted to produce datasets using a topic modeling technique, Latent Dirichlet Allocation(LDA). The result of topic modeling showed that 8 topics ("VOCs investigation", "Subway environment", "Building thermal environment", "School health", "Building particulate matter", "Asbestos risk", "Radon risk", "Air cleaner and treatment") could be extracted using Gibbs sampling method. In terms of topic trends, investigation of volatile organic compounds, subway environment, school health, and building particulate matter showed a decreasing tendency, while the building thermal environment, asbestos risk, radon risk, air cleaners, and air treatment showed an increasing tendency. The results of this topic modeling could help us to understand current trends related indoor environment, and provide valuable information in developing future research and policy frameworks.

키워드

참고문헌

  1. Berkhin, P., 2006. A survey of clustering data mining techniques, Grouping Multidimensional Data, Springer Berlin Heidelberg, 25-71.
  2. Blei, D. M., Ng, A. Y., Jordan, M. I., 2003. Latent dirichlet allocation, Journal of Machine Learning research 3, 993-1022.
  3. Cho, K. W., Bae, S. K., Woo, Y. W., 2017. Analysis on topic trends and topic modeling of KSHSM journal paper using text mining, The Korean Journal of Health Service Management 11(4), 213-224. (in Korean with English abstract) https://doi.org/10.12811/kshsm.2017.11.4.213
  4. Choudhary, A.K., Oluikpe, P.I., Harding, J.A., Carrillo, P.M., 2009. The needs and benefits of text mining applications on post-project reviews. Computers in Industry 60(9), 728-740. https://doi.org/10.1016/j.compind.2009.05.006
  5. Kang, S. W., Lee, D. H., Chang, K. B., Jin, D. Y., Hong, H. W., Han, K. J., Kim J. H., Kang, S. A., Kim, D. Y., Jung, E. H., 2017. Big data Analysis : Application to environmental research and service, Korea Environment Institute (KEI).
  6. Kao, A., Poteet, S. R., 2007, Natural language processing and text mining, Springer Science and Business Media, London, 1-7.
  7. Kim, C. S., Kwahk, K. Y., Yoon, H., 2017. An analysis of research trend in tourism studies : Applying topic modeling and time series regression analysis, Journal of Tourism and Leisure Research 29(12), 25-39.(in Korean with English abstract)
  8. Kim, S. H., Yoon, J. W., 2016. Analysis system for sns issues per country based on topic model, Journal of Korean Institute of Information Scientists and Engineers 43(11), 1202-1209. (in Korean with English abstract)
  9. Kim, Y. S., Roh, Y. M., Hong, S. C., Lee, C. M., Jun, H. J., Kim, J. C., Cho, J. H., 2005. A survey of indoor air quality in public facilities, Journal of Korean Society for Indoor Environment 1(2), 144-155. (in Korean with English abstract)
  10. Lee, C. M., Kim Y. S., 2004. Analysis of research trend for indoor air pollutants and health risk assessment in public facilities, Journal of Korean Society for Indoor Environment 1(1), 39-60. (in Korean with English abstract)
  11. Lee, M. S., Lee C. H., Kim, J. Y., 2014. Big data analysis on demands for environmental policies, Korea Environment Institute.
  12. Liu, Z., Yin, Y., Liu, W., Dunford, M., 2015. Visualizing the intellectual structure and evolution of innovation systems research : a bibliometric analysis, Scientometrics 103(1), 135-158. https://doi.org/10.1007/s11192-014-1517-y
  13. National Academy of Sciences (NAS), 1981. Indoor Pollutants, National Academy Press, Washington DC.
  14. Park, J. S., Hong, S. G., Kim, J. W., 2017. A study on science technology trend and prediction using topic modeling, Journal of the Korea Industrial Information Systems Research 22(4), 19-28. (in Korean with English abstract) https://doi.org/10.9723/jksiis.2017.22.4.019
  15. Park, J. H. and Song, M., 2013. A study on the research trend in library and information science in Korea using topic modeling, Journal of the Korean society for Information 33(2), 7-30. (in Korean with English abstract)
  16. Wade, W. A., Cote, W. A., Yocom, J. E., 1975. A study of indoor air quality, Journal of the Air Pollution Control Association 25(9), 933-939. https://doi.org/10.1080/00022470.1975.10468114
  17. Woods, J. E., 1991. An engineering approach to controlling indoor air quality, Environment Health Perspectives 95, 15-21. https://doi.org/10.1289/ehp.919515
  18. Yoon, S. Y., Yoon, D. K., 2017. A trend analysis on disaster and safety management using topic modeling, Journal of the Korean Society for Geospatial Information Science 25(3), 75-85. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2017.25.3.075

피인용 문헌

  1. 다중이용시설별 실내공기 오염물질 농도분포 및 기준치 이상 값의 구성비 조사 vol.47, pp.5, 2018, https://doi.org/10.5668/jehs.2021.47.5.398