DOI QR코드

DOI QR Code

Microbial Decontamination of Black Pepper Powder Using a Commercial-scale Intervention System Combining Ultraviolet-C and Plasma Treatments

Ultraviolet-C와 플라즈마를 병합 처리하는 양산형 살균 시스템을 이용한 후춧가루 미생물 저해

  • Bang, In Hee (Department of Food Science and Technology, Seoul Women's University) ;
  • Lee, Seung Young (Department of Food Science and Technology, Seoul Women's University) ;
  • Han, Kyoon Sik (Kyunghan Co., Ltd.) ;
  • Min, Sea C. (Department of Food Science and Technology, Seoul Women's University)
  • Received : 2018.10.20
  • Accepted : 2018.11.01
  • Published : 2018.11.30

Abstract

Effects of a commercial scale intervention system combining ultraviolet (UV)-C and plasma treatments on the microbial decontamination of black pepper powder were investigated. The process parameters include treatment time, time for plasma accumulation before treatment, and water activity of black pepper powder. A significant reduction in the number of indigenous aerobic mesophilic bacteria in black pepper powder was observed after treatments lasted for ${\geq}20min$ (p<0.05) and the reduction was differed by powder manufacturer. The microbial reduction rates obtained by individual UV-C treatment, individual plasma treatment, and UV-C/plasma-combined treatment were 0.2, 0.5, and 1.0 log CFU/g, respectively, suggesting that the efficacy of the microbial inactivation was enhanced by treatment combination. Nonetheless, neither plasma accumulation time nor powder water activity affected the microbial inactivation efficacy of the combined treatment. The UV-C/plasma-combined treatment, however, decreased lightness of black pepper powder, and the decrease generally increased as operation time increased. The plasma accumulation time of 20 min resulted in significant reduction in both lightness and brown color. The results indicate that the commercial-scale intervention system combining treatments of UV-C and plasma has the potential to be applied in the food industry for decontaminating black pepper powder.

양산형 UV-P 처리는 장비를 20분 이상 작동하였을 때 후춧가루의 토착 중온 호기성 세균을 유의적으로 저해시켰다. UV-P 처리는 토착 미생물 저해에 있어 상승효과를 보여주었으나 후춧가루의 색을 어둡게 하였다. UV-P 처리의 후춧가루 미생물 저해 효과와 색 변화에 대한 영향은 처리되는 후춧가루를 오염시키는 미생물과 후춧가루 종류에 영향을 받음을 알 수 있었다. 또한 본 연구 결과는 UV-P 장비 내 플라즈마 충적 시간과 후춧가루의 $a_w$ 상승이 UV-P 처리된 후춧가루의 미생물 저해 효과 향상과 색 유지에 효과적이지 않음을 알 수 있었다. 본 연구는 UV-C와 플라즈마 처리를 병합한 양산형 UV-P 처리가 후춧가루의 토착 미생물을 저해시키는 기술로서의 가능성을 보여주었다. 그러나 앞으로 추가적인 연구를 통해 UV-P 처리부의 온도상승 및 후춧가루의 색도 변화를 최소화할 수 있는 방법이 제시되어야 할 것이다.

Keywords

Acknowledgement

Supported by : 농림식품기술기획평가원

References

  1. Allende A, McEvoy JL, Luo Y, Artes F, Wang CY. 2006. Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed 'Red Oak Leaf'lettuce. Food Microbiol. 23: 241-249. https://doi.org/10.1016/j.fm.2005.04.009
  2. Banerjee M, Sarkar PK. 2004. Growth and enterotoxin production by sporeforming bacterial pathogens from spices. Food Control. 15: 491-496. https://doi.org/10.1016/j.foodcont.2003.07.004
  3. Bintsis T, Litopoulou-Tzanetaki E, Robinson RK. 2000. Existing and potential applications of ultraviolet light in the food industry-a critical review. J. Sci. Food Agric. 80: 637-645. https://doi.org/10.1002/(SICI)1097-0010(20000501)80:6<637::AID-JSFA603>3.0.CO;2-1
  4. Cheon HL, Shin JY, Park KH, Chung MS, Kang DH. 2015. Inactivation of foodborne pathogens in powdered red pepper (Capsicum annuum L.) using combined UV-C irradiation and mild heat treatment. Food Control. 50: 441-445. https://doi.org/10.1016/j.foodcont.2014.08.025
  5. Degala HL, Mahapatra AK, Demirci A, Kannan G. 2018. Evaluation of non-thermal hurdle technology for ultraviolet-light to inactivate Escherichia coli K12 on goat meat surfaces. Food Control. 90: 113-120. https://doi.org/10.1016/j.foodcont.2018.02.042
  6. Fine F, Gervais P. 2004. Efficiency of pulsed UV light for microbial decontamination of food powders. J. Food Prot. 67: 787-792. https://doi.org/10.4315/0362-028X-67.4.787
  7. Gaunt LF, Begga CB, Georghiou GE. 2006. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans. Plasma Sci. 34: 1257-1269. https://doi.org/10.1109/TPS.2006.878381
  8. Ghodki BM, Goswami TK. 2017. Thermal and mechanical properties of black pepper at different temperatures. J. Food Process Eng. 40: e12342. https://doi.org/10.1111/jfpe.12342
  9. Gulcin I. 2005. The antioxidants and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 56: 491-499. https://doi.org/10.1080/09637480500450248
  10. Ha JW, Kang DH. 2013. Simultaneous near-infrared radiant heating and ultraviolet radiation for inactivating Escherichia coli O157: H7 and Salmonella enterica serovar Typhimurium in powdered red pepper (Capsicum annum L.). Appl. Environ. Microbiol.79: 6568-6575. https://doi.org/10.1128/AEM.02249-13
  11. Hashim IB, McWatters KH, Hung YC. 1999. Marination method and honey level affect physical and sensory characteristics of roasted chicken. J. Food Sci. 64: 163-166. https://doi.org/10.1111/j.1365-2621.1999.tb09883.x
  12. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schluter O. 2015. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 55: 221-229. https://doi.org/10.1016/j.foodcont.2015.03.003
  13. Kim JE, Kim IH, Min SC. 2013. Microbial decontamination of vegetables and spices using cold plasma treatments. Korean J. Food Sci. Technol. 45: 735-741. https://doi.org/10.9721/KJFST.2013.45.6.735
  14. Kim SY, Bang IH, Min SC. 2019. Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment. J. Food Eng. 242: 55-67. https://doi.org/10.1016/j.jfoodeng.2018.08.020
  15. Laroussi M, Leipold F. 2004. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233: 81-86. https://doi.org/10.1016/j.ijms.2003.11.016
  16. Lee H, Kim JE, Chung MS, Min SC. 2015. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol. 51: 74-80. https://doi.org/10.1016/j.fm.2015.05.004
  17. Liu H, Zeng F, Wang Q, Ou S, Tan L, Gu F. 2013. The effect of cryogenic grinding and hammer milling on the flavour quality of ground pepper (Piper nigrum L.). Food Chem. 141: 3402-3408. https://doi.org/10.1016/j.foodchem.2013.06.052
  18. Noci F, Riener J, Walkling-Ribeiro M, Cronin DA, Morgan DJ, Lyng JG. 2008. Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. J. Food Eng. 85: 141-146. https://doi.org/10.1016/j.jfoodeng.2007.07.011
  19. Park JH, Lee GM, Kim JW, Lee GM, Shin JK. 2018. Sterilization effect on black-and white pepper by intense pulsed light with tubular-shaped treatment chamber. Food Eng. Prog. 22: 248-255. https://doi.org/10.13050/foodengprog.2018.22.3.248
  20. Park WK, Yoon J, Choi C. 1991. Studies on quality evaluation of pepper (Piper nigrum L.). Koean J. Food Sci. Technol. 23: 15-18.
  21. Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF. 1998. The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 26: 1685-1694. https://doi.org/10.1109/27.747887
  22. Schweiggert U, Carle R, Schieber A. 2007. Conventional and alternative processes for spice production-a review. Trends Food Sci. Technol.18: 260-268. https://doi.org/10.1016/j.tifs.2007.01.005
  23. Tipsrisukond N, Fernando LN, Clarke AD. 1998. Antioxidant effects of essential oil and oleoresin of black pepper from supercritical carbon dioxide extractions in ground pork. J. Agric. Food Chem. 46: 4329-4333. https://doi.org/10.1021/jf9802880
  24. Thirumdas R, Sarangapani C, Annapure US. 2015. Cold plasma: a novel non-thermal technology for food processing. Food Biophys. 10: 1-11. https://doi.org/10.1007/s11483-014-9382-z
  25. Yong HI, Kim HJ, Park S, Kim K, Choe W, Yoo SJ, Jo C. 2015. Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Res. Int. 69: 57-63. https://doi.org/10.1016/j.foodres.2014.12.008
  26. Zweifel C, Stephan R. 2012. Spices and herbs as source of Salmonella-related foodborne diseases. Food Res. Int. 45: 765-769. https://doi.org/10.1016/j.foodres.2011.02.024

Cited by

  1. 비가열 살균 후추의 향미특성 vol.51, pp.6, 2018, https://doi.org/10.9721/kjfst.2019.51.6.551
  2. Flavor and Taste Characteristics of Black Pepper by Combining Nonthermal Sterilization Treatments vol.24, pp.2, 2018, https://doi.org/10.13050/foodengprog.2020.24.2.126
  3. Microbial Decontamination of Rice Germ Using a Large-Scale Plasma Jet-Pulsed Light-Ultraviolet-C Integrated Treatment System vol.14, pp.3, 2018, https://doi.org/10.1007/s11947-021-02590-6