DOI QR코드

DOI QR Code

Influential Factors on Supercooling of Nineteen Fruits and Vegetables

과채류 19종의 과냉각 영향요인 분석

  • Kim, Jinse (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Park, Jong Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Jung, Hyun Kyung (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Park, Seok Ho (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Choi, Dong Soo (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Kim, Yong Hoon (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Lee, Soo Jang (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Park, Chun Wan (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Lee, Young Hee (Department of Agricultural Engineering, National Institute of Agricultural Sciences)
  • 김진세 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박종우 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 정현경 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박석호 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 최동수 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 김용훈 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 이수장 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박천완 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 이영희 (농촌진흥청 국립농업과학원 농업공학부)
  • Received : 2018.09.11
  • Accepted : 2018.10.26
  • Published : 2018.11.30

Abstract

The main purposes of this study were to identify the factors affecting the supercooling property and to improve the possibility of supercooling storage of fruits and vegetables. Freezing point and nucleation temperature, moisture content, hardness, sugar content, and pH of nineteen fruits and vegetables were measured and Pearson correlation analysis was performed. Freezing point showed a statistically significant correlation with moisture content and sugar content (p<0.01), while ice nucleation temperature showed a correlation (p<0.05) only for sugar content. In particular, the water content and sugar content did not show any correlation with the freezing supercooling difference (FSD). From the correlation analysis between FSD, aerobic bacteria, lactic acid bacteria, yeast, and mold, FSD showed a correlation (p<0.01) with aerobic bacteria. The experiments of the saline solutions inoculated with aerobic bacteria at different concentrations showed FSDs of about 2 for saline inoculated with 9.4 log CFU/mL and about 6 for saline inoculated lower than 5 log CFU/mL. Therefore, the aerobic bacteria concentration was determined to be a key factor affecting the supercooling storage of fruits and vegetables.

19종의 과채류에 대한 동결점 및 빙핵 형성 온도, 함수율, 경도, 당도, pH를 측정하여 Pearson 상관분석을 하였다. 동결점은 함수율과 당도에 p<0.01의 유의적인 상관관계를 나타냈으나, 빙핵 형성 온도는 당도에만 p<0.05의 상관관계를 보였다. 특히 동결점과 빙핵 형성 온도의 차이값인 과냉각 격차 FSD와는 함수율과 당도 등이 모두 상관관계를 보이지 않았다. 호기성세균, 유산균, 효모, 곰팡이의 다양한 미생물이 분포하는 배추에 대한 미생물 분석과 FSD와의 상관분석을 수행하였는데, 호기성 세균과 p<0.01의 상관관계가 나타났다. 호기성 세균을 9.4 log CFU/mL의 농도로 접종한 식염수와 이를 멸균한 시료를 각각 $10^2$, $10^4$, $10^6$ 배로 희석하여 동결점과 빙핵 형성 온도 분석에서도 높은 농도의 호기성 세균이 빙핵 형성 온도를 높이는 결과가 나왔다. 하지만, 약 5 log CFU/mL 수준 이하에서는 멸균식염수와 빙핵 형성 온도의 통계적 차이가 없는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Aleksandrov VD, Barannikov AA, Dobritsa NV. 2000. Effect of magnetic field on the supercooling of water drops. Inorg Mater. 36: 895-898. https://doi.org/10.1007/BF02758700
  2. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington DC, USA, pp.777-784.
  3. Arias NS, Bucci SJ, Scholz FG, Goldstein G. 2015. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity. Plant Cell Environ. 38:2161-2070.
  4. Attard E, Yang H, Delort AM, Amato P, Poschl U, Glaux C, Koop T, Morris CE. 2012. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas. Atmos. Chem. Phys. 12: 10667-10677. https://doi.org/10.5194/acp-12-10667-2012
  5. Dalvi-Isfahan M, Hamdami N, Xanthakis E, Le-Bail A. 2017. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J. Food Eng. 195: 222-234. https://doi.org/10.1016/j.jfoodeng.2016.10.001
  6. DeVoe H. 2014. Thermodynamics and chemistry, 2nd ed ver 5, Pearson Education Inc, College Park, MD, USA, pp. 213-215.
  7. Ehre D, Lavert E, Lahav M, Lubomirsky I. 2010. Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science 327: 672-675. https://doi.org/10.1126/science.1178085
  8. Farshad A, Akhondzadeh S. 2008. Effects of sucrose and glycerol during the freezing step of cryopreservation on the viability of goat spermatozoa. Asian-Aust. J. Anim. Sci. 21:1721-1727. https://doi.org/10.5713/ajas.2008.80159
  9. James C, Seignemartin V, James SJ. 2009. The freezing and supercooling of garlic (Allium sativum L.). Int. J. Refrig. 32: 253-260. https://doi.org/10.1016/j.ijrefrig.2008.05.012
  10. James C, Hanser P, James S. 2011. Super-cooling phenomena in fruits, vegetables and seafoods. In: 11th International Congress on Engineering and Food (ICEF), Athens, Greece.
  11. Kim JS, Chun HH, Park SH, Choi DS, Choi SR, Oh SS, Yoo SM. 2014. System Design and Performance Analysis of a Quick Freezer using Supercooling. J. Biosystems Eng. 39: 330-335. https://doi.org/10.5307/JBE.2014.39.4.330
  12. Kim JS, Jung HK, Kim JH, Lee YH, Park SH, Choi DS, Kim YH, Lee SJ, Park CW, Cho BK. 2018. Effect of pallet size MAP using PA film and LLDPE film on the shelf life of tomatoes and paprika. Food Eng. Prog. 22: 100-109. https://doi.org/10.13050/foodengprog.2018.22.2.100
  13. Kim YB, Yasutaka K, Akitsugu I, Reinosuke N. 1996. Effect of storage temperature on keeping quality of tomato and strawberry fruits. J. Kor. Soc. Hort. Sci. 37: 526-532.
  14. Kittel C, Kroemer H. 1980. Thermal physics 2nd ed. WH Freeman and Company, New York, NY, USA, pp 294-295.
  15. Kobayashi A, Horikawa M, Kirschvink JL, Golash HN. 2018. Magnetic control of heterogeneous ice nucleation with nano phase magnetite: Biophysical and agricultural implications. PNAS 115: 5383-5388. https://doi.org/10.1073/pnas.1800294115
  16. Martins RC, Lopes VV. 2007. Modelling supercooling in frozen strawberries: Experimental analysis, cellular automation and inverse problem methodology. J. Food Eng. 80: 126-141. https://doi.org/10.1016/j.jfoodeng.2006.05.009
  17. Orlowska M, Havet M, Le-Bail A. 2009. Controlled ice nucleation under high DC electrostatic field conditions. Food Res. Int. 42: 879-884. https://doi.org/10.1016/j.foodres.2009.03.015
  18. Park JW, Kim JS, Park SH, Choi DS, Choi SR, Kim YH, Lee SJ, Park CW, Han GJ. 2016. Estimating the freezing and supercooling points of Korean agricultural products from experimental and quality characteristics. Korean J. Food Preserv. 23: 438-444. https://doi.org/10.11002/kjfp.2016.23.3.438
  19. Park SH, Park CW, Park JW, Choi DS, Kim JS, Kim YH, Choi SR, Lee SJ. 2016. Prediction for storage life and quality of Fuji Apple stored in a controlled atmosphere container. Food Eng. Prog. 20: 373-378. https://doi.org/10.13050/foodengprog.2016.20.4.373
  20. Pham QT. 2008. Advances In Food Freezing/Thawing/Freeze Concentration Modelling and Techniques. Japan J. Food Eng. 9: 21-32. https://doi.org/10.11301/jsfe2000.9.21
  21. Sapers GM, Gorney JR, Yousef AE. 2005. Microbiology of fresh fruits and vegetables, Taylor and Francis, New York, NY, USA, pp. 75-94.
  22. Schimid D, Pridmore D, Capitani G, Battistutta R, Neeser JR, Jann A. 1997. Molecular organization of the ice nucleation protein Ina V from Pseudomonas syringae. FEBS Lett. 414:590-594. https://doi.org/10.1016/S0014-5793(97)01079-X
  23. Seeley LH, Seidler GT, Dash JG. 1999. Apparatus for statistical studies of heterogeneous nucleation. Rev. Sci. Instrum. 70: 3664-3667. https://doi.org/10.1063/1.1149975
  24. Shin DS, Lee YC. 2002. Antimicrobial activities of allin-alliinase reaction compounds extracted from garlic. Food Eng. Prog. 6:67-72.
  25. Sperber WH, Doyle MP. 2009. Compendium of the microbiological spoilage of foods and beverages, Springer-Verlag, New York, NY, USA, pp. 135-183.
  26. Wang GM, Haymet ADJ. 1998. Trehalose and other sugar solutions at low temperature modulated differential scanning calorimetry (Mdsc). J. Phys. Chem. B 102: 5341-5347.
  27. Wilson PW, Heneghan AF, Haymet AD. 2003. Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88-98. https://doi.org/10.1016/S0011-2240(02)00182-7
  28. Xanthakis E, Havet M, Chevallier S, Abadie J, Le-Bail A. 2013. Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innov. Food Sci. Emerg. 20: 115-120. https://doi.org/10.1016/j.ifset.2013.06.011

Cited by

  1. Improvement of Temperature Constancy of Direct Refrigerator for Supercooled Storage vol.23, pp.4, 2019, https://doi.org/10.13050/foodengprog.2019.23.4.270
  2. Supercooling as a potentially improved storage option for commercial kimchi vol.86, pp.3, 2018, https://doi.org/10.1111/1750-3841.15633