DOI QR코드

DOI QR Code

Design and Fabrication of a Thermoelectric Generator Based on BiTe Legs to power Wearable Device

  • Moon, S.E. (ICT Materials Research Group, ETRI) ;
  • Kim, J. (ICT Materials Research Group, ETRI) ;
  • Lee, S.M. (ICT Materials Research Group, ETRI) ;
  • Lee, J. (ICT Materials Research Group, ETRI) ;
  • Im, J.P. (ICT Materials Research Group, ETRI) ;
  • Kim, J.H. (ICT Materials Research Group, ETRI) ;
  • Im, S.Y. (ICT Materials Research Group, ETRI) ;
  • Jeon, E.B. (ICT Materials Research Group, ETRI) ;
  • Kwon, B. (Center for Electronic Materials, KIST) ;
  • Kim, H. (Center for Electronic Materials, KIST) ;
  • Kim, J.S. (Center for Electronic Materials, KIST)
  • Received : 2018.11.01
  • Accepted : 2018.11.13
  • Published : 2018.11.30

Abstract

To attain power generation with body heat, the thermal resistance matched design of the thermoelectric generator was the principal factor which was not critical in the case of thermoelectric generator for the waste heat generation. The dimension of thermoelectric legs and the number of thermoelectric leg-pairs dependent output power performances of the thermoelectric generator on the human wrist condition was simulated using 1-dimensional approximated heat flow equations with the temperature dependent material coefficients of the constituent materials and the dimension of the substrate. With the optimum thermoelectric generator design, thermoelectric generator modules were fabricated by using newly developed fabrication processes, which is mass production possible. The electrical properties and the output power characteristics of the fabricated thermoelectric modules were characterized by using a home-made test set-up. The output voltage of the designed thermoelectric generator were a few tens of millivolts and its output power was several hundreds of microwatts under the conditions at the human wrist. The measured output voltage and power of the fabricated thermoelectric generator were slightly lower than those of the designed thermoelectric generator due to several reasons.

Keywords

Acknowledgement

Grant : Development of high efficient thermoelectric module with figure of merit (Z)

Supported by : National Research Council of Science & Technology (NST), KEIT, Electronics and Telecommunications Research Institute (ETRI)

References

  1. J-H. Choi, J. Park, H. D. Park and O-G. Min, ETRI J. 39, 202 (2017). https://doi.org/10.4218/etrij.17.2816.0109
  2. M. T. Dunhama, M. T. Barako, S. LeBlanc, M. Asheghi, B. Chen and K. E. Goodson, Energy 93, 2006 (2015). https://doi.org/10.1016/j.energy.2015.10.032
  3. S. Song, K. H. Chang, C. Yoon and J-M. Chung, ETRI J. 40, 7 (2018). https://doi.org/10.4218/etrij.18.2918.2067
  4. J. A. Paradiso and T. Starner, IEEE Pervasice Comput. 4, 16 (2005).
  5. S. Roundy and P. K. Wright, Smart Mater. Struct. 13, 1131 (2004). https://doi.org/10.1088/0964-1726/13/5/018
  6. A. R. M. Siddique, R. Rabari, S. Mahmud and B.V. Heyst, Energy 115, 1081 (2018).
  7. J. Kim, J. Korean Phys. Soc. 50, 168 (2007).
  8. S. E. Moon, S. Q. Lee, S-K. Lee, Y-G. Lee, Y. S. Yang, K.-H. Park et al., ETRI J. 31, 688 (2009). https://doi.org/10.4218/etrij.09.1209.0015
  9. J. Kim, S-J. Kim, J. Y. Kwon, W. Choi, H. J. Kim, T. Kim et al., J. Korean Phys. Soc. 68, 1472 (2016). https://doi.org/10.3938/jkps.68.1472
  10. D. Champier, Energy Conversion and Management 140, 167 (2017). https://doi.org/10.1016/j.enconman.2017.02.070
  11. M-K. Kim, M-S. Kim, S. Lee, C. Kim and Y-J. Kim, Smart Mater. Struct. 23, 105002-1 (2014). https://doi.org/10.1088/0964-1726/23/10/105002
  12. S. J. Kim, H. Choi, Y. Kim, J. H. We, J. S. Shin, H. E. Lee et al., Nano Energy 31, 258 (2017). https://doi.org/10.1016/j.nanoen.2016.11.034
  13. J-H. Bahk, H. Fang, K. Yazawa and A. Shakouri, J. Mater. Chem. C 3, 10362 (2015). https://doi.org/10.1039/C5TC01644D
  14. M. Hyland, H. Hunter, J. Liu, E. Veety and D. Vashaee, Applied Energy 182, 518 (2016). https://doi.org/10.1016/j.apenergy.2016.08.150
  15. K. Pietrzyk, J. Soares, B. Ohara and H. Lee, Applied Energy 183, 218 (2016). https://doi.org/10.1016/j.apenergy.2016.08.186
  16. R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof and R. Mertens, Solid-State Electronics 53, 684 (2009). https://doi.org/10.1016/j.sse.2008.12.011
  17. X. Hu, H. Takazawa, K. Nagase, M. Ohta and A. Yamamoto, Journal of ELECTRONIC MATERIALS 44, 3637 (2015). https://doi.org/10.1007/s11664-015-3898-y
  18. F. Suarez, A. Nozariasbmarz, D. Vashaee and M. C. Ozturk, Energy Environ. Sci. 9, 2099 (2016). https://doi.org/10.1039/C6EE00456C
  19. R. Mccarty, Journal of ELECTRONIC MATERIALS 42, 1504 (2013). https://doi.org/10.1007/s11664-012-2299-8
  20. C. Goupil, W. Seifert, K. Zabrocki, E. Muller and G. J. Snyder, Entropy 13, 1481 (2011). https://doi.org/10.3390/e13081481
  21. K. T. Settaluri, H. LO and R. J. Ram, Journal of ELECTRONIC MATERIALS 41, 984 (2012). https://doi.org/10.1007/s11664-011-1834-3
  22. J-P. Im, S. E. Moon and C-G. Lyuh, ETRI J. 38, 654 (2016).
  23. Y. G. Lee, J. Kim, M-S. Kang, S-H. Baek, S. K. Kim, S-M. Lee et al., Adv. Mater. Technol. 1600292, 1 (2017).
  24. J. Choi, Y. Jung, S. J. Yang, J. Y. Oh, J. Oh et al., ACS Nano 11, 7608 (2017). https://doi.org/10.1021/acsnano.7b01771
  25. V. Leonov, IEEE Sensors Journal 13, 2284 (2013). https://doi.org/10.1109/JSEN.2013.2252526