DOI QR코드

DOI QR Code

Synthesis of Synchrotron Radiation-induced Gold Nanoparticles as Radiosensitizer in Radiotherapy

  • Oh, Se An (Department of Radiation Oncology, Yeungnam University Medical Center) ;
  • Park, Jae Won (Department of Radiation Oncology, Yeungnam University Medical Center) ;
  • Kim, Seong Hoon (Department of Radiation Oncology, Yeungnam University Medical Center) ;
  • Kim, Sung Kyu (Department of Radiation Oncology, Yeungnam University Medical Center) ;
  • Yea, Ji Woon (Department of Radiation Oncology, Yeungnam University Medical Center) ;
  • Lee, Su Yong (Pohang Accelerator Laboratory, POSTECH) ;
  • Kang, Hyon Chol (Department of Materials Science and Engineering, Chosun University)
  • Received : 2018.09.03
  • Accepted : 2018.10.10
  • Published : 2018.11.30

Abstract

This study investigated the feasibility of synthesizing GNPs using synchrotron radiation X-ray for use as a radiosensitizer in radiotherapy, and examined the morphology of the GNPs. Different concentration ratios of 4-mM gold precursor aqueous solution and 4-mM $NaHCO_3$ were mixed. This gold precursor aqueous solution was continuously irradiated with synchrotron radiation in the 4B X-ray microdiffraction beamline of Pohang Light Source (PLS)-II in Korea. The SEM, EDS, TEM, and XRD spectra of the GNPs synthesized using the synchrotron radiation were investigated. The GNPs synthesized using the synchrotron radiation were nanocrystals predominantly in the (111) direction of the face-centered cubic structure. We found that the shape of the gold nanoparticles was icosahedron at the molar concentrations of 0.25 mM:0.25 mM and 0.5 mM:0.5 mM mixed with 4 mM $HAuCl_4{\cdot}3H_2O$ and 4 mM $NaHCO_3$ solutions.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. R. Baskar, K. A. Lee and K-W. Yeoh, Int. J. Med. Sci. 9, 193 (2012). https://doi.org/10.7150/ijms.3635
  2. S. Her, D. A. Jaffray and C. Allen, Adv. Drug Deliv. Rev. 109, 84 (2017). https://doi.org/10.1016/j.addr.2015.12.012
  3. X. Zhang, Cell Biochem. Biophys. 72, 771 (2015). https://doi.org/10.1007/s12013-015-0529-4
  4. D. Kwatra, A. Venugopal and S. Anant, Transl. Cancer Res. 2, 330 (2013).
  5. N. Tian, Z-Y. Zhou, S-G. Sun, Y. Ding and Z. L. Wang, science 316, 732 (2007). https://doi.org/10.1126/science.1140484
  6. J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951). https://doi.org/10.1039/df9511100055
  7. H. Tyagi, A. Kushwaha, A. Kumar and M. Aslam, Nanoscale Res. Lett. 11, 362 (2016). https://doi.org/10.1186/s11671-016-1576-5
  8. P. Zhao, N. Li and D. Astruc, Coord. Chem. Rev. 257, 638 (2013). https://doi.org/10.1016/j.ccr.2012.09.002
  9. G. Frens, Nature physical science 241, 20 (1973). https://doi.org/10.1038/physci241020a0
  10. L. Huang, Z. R. Guo, M. Wang and N. Gu, Chin. Chem. Lett. 17, 1405 (2006).
  11. C. Li, D. Li, G. Wan, J. Xu and W. Hou, Nanoscale Res. Lett. 6, 440 (2011). https://doi.org/10.1186/1556-276X-6-440
  12. C. S. Ah, Y. J. Yun, H. J. Park, W-J. Kim, D. H. Ha and W. S. Yun, Chem. Mater. 17, 5558 (2005). https://doi.org/10.1021/cm051225h
  13. D-J. Kim, M. G. So and K-S. Kim, Adv. Powder Technol. 21, 111 (2010). https://doi.org/10.1016/j.apt.2009.11.005
  14. M. A. Uppal, A. Kafizas, M. B. Ewing and I. P. Parkin, New J. Chem. 34, 2906 (2010). https://doi.org/10.1039/c0nj00505c
  15. M. A. Uppal, A. Kafizas, T. H. Lim and I. P. Parkin, New J. Chem. 34, 1401 (2010). https://doi.org/10.1039/b9nj00745h
  16. X. Ji, X. Song, J. Li, Y. Bai, W. Yang and X. Peng, J. Amer. Chem. Soc. 129, 13939 (2007). https://doi.org/10.1021/ja074447k
  17. W. Leng, P. Pati and P. J. Vikesland, Environ. Sci. Nano 2, 440 (2015). https://doi.org/10.1039/C5EN00026B
  18. P. Liu, H. Cui, C. Wang and G. Yang, Phys. Chem. Chem. Phys. 12, 3942 (2010). https://doi.org/10.1039/b918759f
  19. C. Rehbock, V. Merk, L. Gamrad, R. Streubel and S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3057 (2013). https://doi.org/10.1039/C2CP42641B
  20. M. Kim, S. Osone, T. Kim, H. Higashi and T. Seto, KONA Powder Part. J. 34, 80 (2017). https://doi.org/10.14356/kona.2017009
  21. V. K. T. Ngo, D. G. Nguyen, T. P. Huynh and Q. V. Lam, Adv. Nat. Sci.: Nanosci. Nanotech. 7, 035016 (2016). https://doi.org/10.1088/2043-6262/7/3/035016
  22. V. K. T. Ngo, H. P. U. Nguyen, T. P. Huynh, N. N. P. Tran, Q. V. Lam and T. D. Huynh, Adv. Nat. Sci.: Nanosci. Nanotech. 6, 035015 (2015). https://doi.org/10.1088/2043-6262/6/3/035015
  23. S. K. Seol, D. Kim, S. Jung and Y. Hwu, Mater. Chem. Phys. 131, 331 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.050
  24. Y. Shang, C. Min, J. Hu, T. Wang, H. Liu and Y. Hu, Solid State Sci. 15, 17 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.09.002
  25. J. A. Jenkins, T. J. Wax and J. Zhao, J. Chem. Educ. 94, 1090 (2017). https://doi.org/10.1021/acs.jchemed.6b00941
  26. L. M. Liz-Marzan, Chem. Commun. 49, 16 (2013). https://doi.org/10.1039/C2CC35720H
  27. S. R. K. Perala and S. Kumar, Langmuir 29, 9863 (2013). https://doi.org/10.1021/la401604q
  28. E. Xiu-tian-feng, Y. Zhang, J-J. Zou, X. Zhang and L. Wang, Mater. Lett. 118, 196 (2014). https://doi.org/10.1016/j.matlet.2013.12.066
  29. Y-C. Yang, C-H. Wang, Y-K. Hwu and J-H. Je, Mater. Chem. Phys. 100, 72 (2006). https://doi.org/10.1016/j.matchemphys.2005.12.007
  30. C-H. Wang, C-C. Chien, Y-L. Yu, C-J. Liu, C-F. Lee, C-H. Chen, Y. Hwu, C-S. Yang, J-H. Je and G. Margaritondo, J. Synchrotron Radiat. 14, 477 (2007). https://doi.org/10.1107/S0909049507044743
  31. Y. Yang, C. Wang, T. Yang, Y. Hwu, C. Chen, J. Je and G. Margaritondo, in Proceedings of the 2007 Synchrotron Radiation Instrumentation: Ninth International Conference (2007), p. 1427.
  32. H. J. Lee, J. H. Je, Y. Hwu and W. Tsai, Nucl. Instrum. Methods Phys. Res. A 199, 342 (2003). https://doi.org/10.1016/S0168-583X(02)01561-6
  33. N. Ma, F. G. Wu, X. Zhang, Y. W. Jiang, H. R. Jia, H. Y. Wang, Y. H. Li, P. Liu, N. Gu and Z. Chen, ACS Appl. Mater. Interfaces 9, 13037 (2017). https://doi.org/10.1021/acsami.7b01112
  34. P. Logeswari, S. Silambarasan and J. Abraham, J. Saudi Chem. Soc. 19, 311 (2015). https://doi.org/10.1016/j.jscs.2012.04.007
  35. Q-Y. Bi, J-D. Lin, Y-M. Liu, H-Y. He, F-Q. Huang and Y. Cao, J. Power Sources 328, 463 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.056
  36. D. Seo, J. C. Park and H. Song, J. Amer. Chem. Soc. 128, 14863 (2006). https://doi.org/10.1021/ja062892u
  37. K. Kwon, K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn and S. W. Han, The J. Phys. Chem. C 111, 1161 (2007). https://doi.org/10.1021/jp064317i