DOI QR코드

DOI QR Code

Neutrinoless Double Beta Decay and Light Sterile Neutrino

  • Jang, C.H. (Physics Department, Chung-Ang University) ;
  • Kim, B.J. (Physics Department, Chung-Ang University) ;
  • Ko, Y.J. (Physics Department, Chung-Ang University) ;
  • Siyeon, K. (Physics Department, Chung-Ang University)
  • Received : 2018.10.31
  • Accepted : 2018.11.13
  • Published : 2018.11.30

Abstract

The recent neutrino experiment results show a preference on normal mass ordering of neutrinos. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in three-neutrino framework based on the normal ordering. Current research is to show that it is possible to find a neutrinoless double beta decay signal even with normal ordered neutrino masses. We propose the existence of light sterile neutrino as a solution to the higher effective mass of electron neutrino expected by experiments under operation. A few short-baseline oscillation experiments gave rise to exclusion bound to the mass of sterile neutrino and its mixing with the lightest neutrino. It is demonstrated that results of neutrinoless double beta decays can also narrow down the ranges of the mass and the mixing angle of sterile neutrino.

Keywords

Acknowledgement

Supported by : National Research Foundation Grant of Korea

References

  1. C. Giunti and C. W. Kim, Fundamentals of neutrino physics and astrophysics (Oxford Press, 2009).
  2. J. D. Vergados, Phys. Rept. 361, 1 (2002). https://doi.org/10.1016/S0370-1573(01)00068-0
  3. J. Barea, J. Kotila and F. Iachello, Phys. Rev. Lett. 109, 042501 (2012). https://doi.org/10.1103/PhysRevLett.109.042501
  4. S. M. Bilenky and C. Giunti, Mod. Phys. Lett. A 27, 1230015 (2012).
  5. M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986). https://doi.org/10.1016/0370-2693(86)91126-3
  6. J. A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990) https://doi.org/10.1103/PhysRevD.42.3344
  7. H. B. Nielsen and Y. Takanishi, Phys. Lett. B 507, 241 (2001). https://doi.org/10.1016/S0370-2693(01)00357-4
  8. E. W. Kolb and S. Wolfram, Nucl. Phys. B 172, 224 (1980) [Erratum-ibid. B 195, 542 (1982)]. https://doi.org/10.1016/0550-3213(80)90167-4
  9. V. Barger, D. A. Dicus, H. J. He and T. J. Li, Phys. Lett. B 583, 173 (2004). https://doi.org/10.1016/j.physletb.2003.12.037
  10. M. A. Luty, Phys. Rev. D 45, 455 (1992) https://doi.org/10.1103/PhysRevD.45.455
  11. M. A. Luty, Phys. Lett. B 345, 248 (1995) [Erratum-ibid. B 382, 447 (1996)] https://doi.org/10.1016/0370-2693(94)01555-Q
  12. L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384, 169 (1996) https://doi.org/10.1016/0370-2693(96)00817-9
  13. W. Buchmuller and M. Plumacher, Phys. Lett. B 431, 354 (1998) https://doi.org/10.1016/S0370-2693(97)01548-7
  14. W. Buchmuller and M. Plumacher, Int. J. Mod. Phys. A 15, 5047 (2000).
  15. T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi and M. Tanimoto, Phys. Rev. Lett. 89, 231601 (2002) https://doi.org/10.1103/PhysRevLett.89.231601
  16. S. Davidson and A. Ibarra, Nucl. Phys. B 648, 345 (2003) https://doi.org/10.1016/S0550-3213(02)00972-0
  17. G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim, I. Masina, M. N. Rebelo and C. A. Savoy, Phys. Rev. D 67, 073025 (2003) https://doi.org/10.1103/PhysRevD.67.073025
  18. A. de Gouvea, B. Kayser and R. N. Mohapatra, Phys. Rev. D 67, 053004 (2003) https://doi.org/10.1103/PhysRevD.67.053004
  19. S. Pascoli, S. T. Petcov and W. Rodejohann, Phys. Rev. D 68, 093007 (2003) https://doi.org/10.1103/PhysRevD.68.093007
  20. W. Grimus and L. Lavoura, J. Phys. G 30, 1073 (2004) https://doi.org/10.1088/0954-3899/30/9/008
  21. A. Ibarra and G. G. Ross, Phys. Lett. B 591, 285 (2004) https://doi.org/10.1016/j.physletb.2004.04.037
  22. S. Davidson and R. Kitano, JHEP 0403, 020 (2004)
  23. M. C. Chen and K. T. Mahanthappa, Phys. Rev. D 71, 035001 (2005) https://doi.org/10.1103/PhysRevD.71.035001
  24. S. Pascoli, S. T. Petcov and A. Riotto, Nucl. Phys. B 774, 1 (2007). https://doi.org/10.1016/j.nuclphysb.2007.02.019
  25. K. Siyeon, J. Korean Phys. Soc. 69, 1638 (2016). https://doi.org/10.3938/jkps.69.1638
  26. A. Gando et al. [KamLAND-Zen Collaboration], Phys. Rev. Lett. 117, 082503 (2016), Addendum: [Phys. Rev. Lett. 117, 109903 (2016)]. https://doi.org/10.1103/PhysRevLett.117.082503
  27. J. B. Albert et al. [EXO Collaboration], Phys. Rev. Lett. 120, 072701 (2018). https://doi.org/10.1103/PhysRevLett.120.072701
  28. C. Alduino et al. [CUORE Collaboration], Phys. Rev. Lett. 120, 132501 (2018). https://doi.org/10.1103/PhysRevLett.120.132501
  29. M. Agostini et al. [GERDA Collaboration], Phys. Rev. Lett. 120, 132503 (2018). https://doi.org/10.1103/PhysRevLett.120.132503
  30. S. I. Alvis et al. [Majorana Collaboration], Phys. Rev. Lett. 120, 211804 (2018). https://doi.org/10.1103/PhysRevLett.120.211804
  31. R. Arnold et al., Eur. Phys. J. C 78, 821 (2018). https://doi.org/10.1140/epjc/s10052-018-6295-x
  32. V. Alenkov et al. [AMoRE Collaboration], arXiv:1512.05957 [physics.ins-det].
  33. J. Y. Lee et al., IEEE Trans. Nucl. Sci. 63, 543 (2016). https://doi.org/10.1109/TNS.2016.2530828
  34. A. Luqman et al., Nucl. Instrum. Meth. A 855, 140 (2017). https://doi.org/10.1016/j.nima.2017.01.070
  35. P. Adamson et al. [NOvA Collaboration], Phys. Rev. Lett. 118, 231801 (2017). https://doi.org/10.1103/PhysRevLett.118.231801
  36. K. Abe et al. [T2K Collaboration], Phys. Rev. Lett. 121, 171802 (2018). https://doi.org/10.1103/PhysRevLett.121.171802
  37. P. Adamson et al. [Daya Bay and MINOS Collaborations], Phys. Rev. Lett. 117, 151801 (2016) Addendum: [Phys. Rev. Lett. 117, 209901 (2016)]. https://doi.org/10.1103/PhysRevLett.117.151801
  38. Y. J. Ko et al. [NEOS Collaboration], Phys. Rev. Lett. 118, 121802 (2017). https://doi.org/10.1103/PhysRevLett.118.121802
  39. J. Ashenfelter et al. [PROSPECT Collaboration], arXiv: 1806.02784 [hep-ex]. https://doi.org/10.1103/PhysRevLett.121.251802
  40. Y. Abreu et al. [SoLid Collaboration], JINST 12, P04024 (2017). https://doi.org/10.1088/1748-0221/12/04/P04024
  41. I. Alekseev et al. [DANSS Collaboration], Phys. Lett. B, 038 (2018)
  42. H. Almazan et al. [STEREO Collaboration], Phys. Rev. Lett. 121, 161801 (2018). https://doi.org/10.1103/PhysRevLett.121.161801
  43. S. R. Elliott, A. A. Hahn and M. K. Moe, Phys. Rev. Lett. 59, 2020 (1987). https://doi.org/10.1103/PhysRevLett.59.2020
  44. A. S. Barabash, Phys. Rev. C 81, 035501 (2010). https://doi.org/10.1103/PhysRevC.81.035501
  45. R. Saakyan, Ann. Rev. Nucl. Part. Sci. 63, 503 (2013). https://doi.org/10.1146/annurev-nucl-102711-094904
  46. A. Faessler, V. Rodin and F. Simkovic, J. Phys. G 39, 124006 (2012). https://doi.org/10.1088/0954-3899/39/12/124006
  47. M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
  48. G. Drexlin [KATRIN Collaboration], Nucl. Phys. Proc. Suppl. 145, 263 (2005). https://doi.org/10.1016/j.nuclphysbps.2005.04.019
  49. C. Giunti and E. M. Zavanin, JHEP 1507, 171 (2015).
  50. G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier and A. Letourneau, Phys. Rev. D 83, 073006 (2011). https://doi.org/10.1103/PhysRevD.83.073006

Cited by

  1. Roles of sterile neutrinos in particle physics and cosmology vol.34, pp.10, 2019, https://doi.org/10.1142/s0217751x19300059
  2. Implications of the dark large mixing angle solution and a fourth sterile neutrino for neutrinoless double beta decay vol.102, pp.1, 2018, https://doi.org/10.1103/physrevd.102.015020