DOI QR코드

DOI QR Code

Silicone breast implant modification review: overcoming capsular contracture

  • Shin, Byung Ho (Department of Biomedical Engineering, Seoul National University College of Medicine) ;
  • Kim, Byung Hwi (Department of Biomedical Engineering, Seoul National University College of Medicine) ;
  • Kim, Sujin (Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Lee, Kangwon (Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Choy, Young Bin (Department of Biomedical Engineering, Seoul National University College of Medicine) ;
  • Heo, Chan Yeong (Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University)
  • Received : 2018.08.02
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

Background: Silicone implants are biomaterials that are frequently used in the medical industry due to their physiological inertness and low toxicity. However, capsular contracture remains a concern in long-term transplantation. To date, several studies have been conducted to overcome this problem. This review summarizes and explores these trends. Main body: First, we examined the overall foreign body response from initial inflammation to fibrosis capsule formation in detail and introduced various studies to overcome capsular contracture. Secondly, we introduced that the main research approaches are to inhibit fibrosis with anti-inflammatory drugs or antibiotics, to control the topography of the surface of silicone implants, and to administer plasma treatment. Each study examined aspects of the various mechanisms by which capsular contracture could occur, and addressed the effects of inhibiting fibrosis. Conclusion: This review introduces various silicone surface modification methods to date and examines their limitations. This review will help identify new directions in inhibiting the fibrosis of silicone implants.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Health Industry Development Institute (KHIDI)

References

  1. Champaneria MC, Wong WW, Hill ME, Gupta SC. The evolution of breast reconstruction: a historical perspective. World J Surg. 2012;36(4):730-42. https://doi.org/10.1007/s00268-012-1450-2
  2. Malahias M, Jordan D, Hughes L, Hindocha S, Juma A. A literature review and summary of capsular contracture: An ongoing challenge to breast surgeons and their patients. International Journal of Surgery Open. 2016;3:1-7.
  3. Headon H, Kasem A, Mokbel K. Capsular contracture after breast augmentation: an update for clinical practice. Archives of plastic surgery. 2015;42(5):532. https://doi.org/10.5999/aps.2015.42.5.532
  4. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008; Elsevier.
  5. Cronin TD. Augmentation mammaplasty: a new" natural feel" prosthesis. Transact, III Internat Congr Plast Surg. 1964.
  6. Hester T, Tebbetts JB, Maxwell GP. The polyurethane-covered mammary prosthesis: facts and fiction (II). Clin Plast Surg. 2001;28(3):579-86.
  7. Luu H, Hutter JC, Bushar HF. A physiologically based pharmacokinetic model for 2, 4-toluenediamine leached from polyurethane foam-covered breast implants. Environ Health Perspect. 1998;106(7):393. https://doi.org/10.1289/ehp.98106393
  8. Brown MH, Shenker R, Silver SA. Cohesive silicone gel breast implants in aesthetic and reconstructive breast surgery. Plast Reconstr Surg. 2005;116(3):768-79. https://doi.org/10.1097/01.prs.0000176259.66948.e7
  9. Fruhstorfer BH, Hodgson EL, Malata CM. Early experience with an anatomical soft cohesive silicone gel prosthesis in cosmetic and reconstructive breast implant surgery. Ann Plast Surg. 2004;53(6):536-42. https://doi.org/10.1097/01.sap.0000134508.43550.6f
  10. Heden P, Jernbeck J, Hober M. Breast augmentation with anatomical cohesive gel implants: the world's largest current experience. Clin Plast Surg. 2001;28(3):531-52.
  11. Kyle DJ, Oikonomou A, Hill E, Bayat A. Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nano-topographical features demonstrates favourable in vitro foreign body response of breastderived fibroblasts. Biomaterials. 2015;52:88-102. https://doi.org/10.1016/j.biomaterials.2015.02.003
  12. Cappellano G, Ploner C, Lobenwein S, Sopper S, Hoertnagl P, Mayerl C, et al. Immunophenotypic characterization of human T cells after in vitro exposure to different silicone breast implant surfaces. PLoS One. 2018;13(2):e0192108. https://doi.org/10.1371/journal.pone.0192108
  13. Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R. The immunology of fibrosis: innate and adaptive responses. Trends Immunol. 2010;31(3):110-9. https://doi.org/10.1016/j.it.2009.12.001
  14. Siggelkow W, Faridi A, Spiritus K, Klinge U, Rath W, Klosterhalfen B. Histological analysis of silicone breast implant capsules and correlation with capsular contracture. Biomaterials. 2003;24(6):1101-9. https://doi.org/10.1016/S0142-9612(02)00429-5
  15. Rolfe B, Mooney J, Zhang B, Jahnke S, Le S-J, Chau Y-Q, et al. The fibrotic response to implanted biomaterials: implications for tissue engineering. Regenerative medicine and tissue engineering-cells and biomaterials: InTech; 2011.
  16. Luttikhuizen DT, Harmsen MC, Luyn MJV. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006;12(7):1955-70. https://doi.org/10.1089/ten.2006.12.1955
  17. Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105(3):927-40.
  18. Williams DF. On the nature of biomaterials. Biomaterials. 2009;30(30):5897-909. https://doi.org/10.1016/j.biomaterials.2009.07.027
  19. Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31(1):81-110. https://doi.org/10.1146/annurev.matsci.31.1.81
  20. Latour RA. Biomaterials: protein-surface interactions. Encyclopedia of biomaterials and biomedical engineering. 2005;1:270-8.
  21. Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol. 2013;31(6):553. https://doi.org/10.1038/nbt.2580
  22. Horbett T. The role of adsorbed proteins in tissue response to biomaterials. Biomaterials science: an introduction to. materials in medicine. 2004;2:237-46.
  23. Vroman L, Adams A, Fischer G, Munoz P. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980;55(1):156-9. https://doi.org/10.1182/blood.V55.1.156.156
  24. Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res. 2005;97(11):1093-107. https://doi.org/10.1161/01.RES.0000191547.64391.e3
  25. Clark RA. The molecular and cellular biology of wound repair: Springer Science & Business Media; 2013.
  26. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1-2):1-18. https://doi.org/10.1089/ten.2005.11.1
  27. Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci. 1997;2(1):d12-26. https://doi.org/10.2741/A171
  28. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191. https://doi.org/10.1038/ni1276
  29. Zhang J-M, An J. Cytokines, inflammation and pain. Int Anesthesiol Clin. 2007;45(2):27. https://doi.org/10.1097/AIA.0b013e318034194e
  30. Lefkowitz DL, Lefkowitz SS. Macrophage-neutrophil interaction: a paradigm for chronic inflammation revisited. Immunol Cell Biol. 2001;79(5):502-6. https://doi.org/10.1046/j.1440-1711.2001.01020.x
  31. Garbuzenko E, Nagler A, Pickholtz D, Gillery P, Reich R, Maquart FX, et al. Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis. Clin Exp Allergy. 2002;32(2):237-46. https://doi.org/10.1046/j.1365-2222.2002.01293.x
  32. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA. The neutrophil as a cellular source of chemokines. Immunol Rev. 2000;177(1):195-203. https://doi.org/10.1034/j.1600-065X.2000.17706.x
  33. Kobayashi SD, Voyich JM, Whitney AR, DeLeo FR. Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leukoc Biol. 2005;78(6):1408-18. https://doi.org/10.1189/jlb.0605289
  34. Chaudhary N, Roth G, Hilberg F, Muller-Quernheim J, Prasse A, Zissel G, et al. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J. 2007;29(5):976-85. https://doi.org/10.1183/09031936.00152106
  35. Leask A, Abraham DJ. $TGF-{\beta}$ signaling and the fibrotic response. FASEB J. 2004;18(7):816-27. https://doi.org/10.1096/fj.03-1273rev
  36. Nakamura I, Zakharia K, Banini BA, Mikhail DS, Kim TH, Yang JD, et al. Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling. PLoS One. 2014;9(4):e92273. https://doi.org/10.1371/journal.pone.0092273
  37. Kreuger J, Phillipson M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov. 2016;15(2):125. https://doi.org/10.1038/nrd.2015.2
  38. Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials. 2015;8(9):5671-701. https://doi.org/10.3390/ma8095269
  39. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23. https://doi.org/10.1038/nri978
  40. Xia Z, Triffitt JT. A review on macrophage responses to biomaterials. Biomed Mater. 2006;1(1):R1. https://doi.org/10.1088/1748-6041/1/1/R01
  41. Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13.
  42. Brett D. A review of collagen and collagen-based wound dressings. Wounds. 2008;20(12):347-56.
  43. Coleman DJ, Foo IT, Sharpe DT. Textured or smooth implants for breast augmentation? A prospective controlled trial. Br J Plast Surg. 1991;44(6):444-8. https://doi.org/10.1016/0007-1226(91)90204-W
  44. Pajkos A, Deva AK, Vickery K, Cope C. Significant Breast Implant Capsules. Plast Reconstr Surg. 2003.
  45. Hall-Findlay EJ. Breast implant complication review: double capsules and late seromas. Plast Reconstr Surg. 2011;127(1):56-66. https://doi.org/10.1097/PRS.0b013e3181fad34d
  46. Wong C-H, Samuel M, Tan B-K, Song C. Capsular contracture in subglandular breast augmentation with textured versus smooth breast implants: a systematic review. Plast Reconstr Surg. 2006;118(5):1224-36. https://doi.org/10.1097/01.prs.0000237013.50283.d2
  47. Stevens WG, Nahabedian MY, Calobrace MB, Harrington JL, Capizzi PJ, Cohen R, et al. Risk factor analysis for capsular contracture: a 5-year Sientra study analysis using round, smooth, and textured implants for breast augmentation. Plast Reconstr Surg. 2013;132(5):1115-23. https://doi.org/10.1097/01.prs.0000435317.76381.68
  48. Brohim RM, Foresman PA, Hildebrandt PK, Rodeheaver GT. Early tissue reaction to textured breast implant surfaces. Ann Plast Surg. 1992;28(4):354-62. https://doi.org/10.1097/00000637-199204000-00010
  49. Spano A, Palmieri B, Taidelli TP, Nava M. Reduction of capsular thickness around silicone breast implants by zafirlukast in rats. Eur Surg Res. 2008;41(1):8-14. https://doi.org/10.1159/000121501
  50. Park S, Park M, Kim BH, Lee JE, Park HJ, Lee SH, et al. Acute suppression of $TGF-{\beta}$ with local, sustained release of tranilast against the formation of fibrous capsules around silicone implants. J Control Release. 2015;200:125-37. https://doi.org/10.1016/j.jconrel.2014.12.021
  51. Kim BH, Park M, Park HJ, Lee SH, Choi SY, Park CG, et al. Prolonged, acute suppression of cysteinyl leukotriene to reduce capsular contracture around silicone implants. Acta Biomater. 2017;51:209-19. https://doi.org/10.1016/j.actbio.2017.01.033
  52. Leberfinger AN, Behar BJ, Williams NC, Rakszawski KL, Potochny JD, Mackay DR, et al. Breast implant-associated anaplastic large cell lymphoma: a systematic review. JAMA surgery. 2017;152(12):1161-8. https://doi.org/10.1001/jamasurg.2017.4026
  53. Sforza M, Zaccheddu R, Alleruzzo A, Seno A, Mileto D, Paganelli A, et al. Preliminary 3-year evaluation of experience with SilkSurface and VelvetSurface Motiva silicone breast implants: a single-center experience with 5813 consecutive breast augmentation cases. Aesthet Surg J. 2017.
  54. Nagakura T, Hirata H, Tsujii M, Sugimoto T, Miyamoto K, Horiuchi T, et al. Effect of viscous injectable pure alginate sol on cultured fibroblasts. Plast Reconstr Surg. 2005;116(3):831-8. https://doi.org/10.1097/01.prs.0000176894.70848.98
  55. Friedman H, Stonerock C, Lefaivre J, Yost M. The effect of seprafilm and interceed on capsule formation around silicone discs in a rat model. J Investig Surg. 2004;17(5):271-81. https://doi.org/10.1080/08941930490502844
  56. Park SO, Han J, Minn KW, Jin US. Prevention of capsular contracture with $Guardix-SG^{(R)}$ after silicone implant insertion. Aesthet Plast Surg. 2013;37(3):543-8. https://doi.org/10.1007/s00266-013-0087-3
  57. Lew DH, Yoon JH, Hong JW, Tark KC. Efficacy of antiadhesion barrier solution on periimplant capsule formation in a white rat model. Ann Plast Surg. 2010;65(2):254-8. https://doi.org/10.1097/SAP.0b013e3181c60f1f
  58. Rieger U, Mesina J, Kalbermatten D, Haug M, Frey H, Pico R, et al. Bacterial biofilms and capsular contracture in patients with breast implants. Br J Surg. 2013;100(6):768-74. https://doi.org/10.1002/bjs.9084
  59. Schreml S, Heine N, Eisenmann-Klein M, Prantl L. Bacterial colonization is of major relevance for high-grade capsular contracture after augmentation mammaplasty. Ann Plast Surg. 2007;59(2):126-30. https://doi.org/10.1097/01.sap.0000252714.72161.4a
  60. Prantl L, Poppl N, Horvat N, Heine N, Eisenmann-Klein M. Serologic and histologic findings in patients with capsular contracture after breast augmentation with smooth silicone gel implants: is serum hyaluronan a potential predictor? Aesthet Plast Surg. 2005;29(6):510-8. https://doi.org/10.1007/s00266-005-5049-y
  61. Jacombs A, Allan J, Hu H, Valente PM, Wessels WL, Deva AK, et al. Prevention of biofilm-induced capsular contracture with antibiotic-impregnated mesh in a porcine model. Aesthet Surg J. 2012;32(7):886-91. https://doi.org/10.1177/1090820X12455429
  62. Barnea Y, Hammond DC, Geffen Y, Navon-Venezia S, Goldberg K. Plasma activation of a breast implant shell in conjunction with antibacterial irrigants enhances antibacterial activity. Aesthet Surg J. 2018;1:9.
  63. Giordano S, Peltoniemi H, Lilius P, Salmi A. Povidone-iodine combined with antibiotic topical irrigation to reduce capsular contracture in cosmetic breast augmentation: a comparative study. Aesthet Surg J. 2013;33(5):675-80. https://doi.org/10.1177/1090820X13491490
  64. Shintani H, Sakudo A, Burke P, McDonnell G. Gas plasma sterilization of microorganisms and mechanisms of action. Exp. Ther. Med. 2010;1(5):731-8. https://doi.org/10.3892/etm.2010.136
  65. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011;7(5):2015-28. https://doi.org/10.1016/j.actbio.2010.12.024
  66. Kylian O, Sasaki T, Rossi F. Plasma sterilization of Geobacillus stearothermophilus by O 2: N 2 RF inductively coupled plasma. Eur. Phys. J. Appl. Phys. 2006;34(2):139-42. https://doi.org/10.1051/epjap:2006034
  67. Yalanis GC, Liu E-W, Cheng H-T. Efficacy and safety of povidone-iodine irrigation in reducing the risk of capsular contracture in aesthetic breast augmentation: a systematic review and meta-analysis. Plast Reconstr Surg. 2015;136(4):687-98. https://doi.org/10.1097/PRS.0000000000001576
  68. Schleimer R. An overview of glucocorticoid anti-inflammatory actions. Eur J Clin Pharmacol. 1993;45(1):S3-7. https://doi.org/10.1007/BF01844196
  69. Joyce D, Steer J, Abraham L. Glucocorticoid modulation of human monocyte/macrophage function: control of $TNF-{\alpha}$ secretion. Inflamm Res. 1997;46(11):447-51. https://doi.org/10.1007/s000110050222
  70. Amano Y, Lee SW, Allison AC. Inhibition by glucocorticoids of the formation of interleukin-1 alpha, interleukin-1 beta, and interleukin-6: mediation by decreased mRNA stability. Mol Pharmacol. 1993;43(2):176-82.
  71. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233. https://doi.org/10.1038/nri.2017.1
  72. Jeon BS, Shin BH, Huh BK, Kim BH, Kim S-N, Ji HB, et al. Silicone implants capable of the local, controlled delivery of triamcinolone for the prevention of fibrosis with minimized drug side effects. J Ind Eng Chem. 2018.
  73. Ikeda H, Inao M, Fujiwara K. Inhibitory effect of tranilast on activation and transforming growth factor ${\beta}1$ expression in cultured rat stellate cells. Biochem Biophys Res Commun. 1996;227(2):322-7. https://doi.org/10.1006/bbrc.1996.1508
  74. Prud'Homme GJ. Pathobiology of transforming growth factor ${\beta}$ in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Investig. 2007;87(11):1077. https://doi.org/10.1038/labinvest.3700669
  75. Suzawa H, Kikuchi S, Arai N, Koda A. The mechanism involved in the inhibitory action of tranilast on collagen biosynthesis of keloid fibroblasts. Jpn. J. Pharmacol. 1992;60(2):91-6. https://doi.org/10.1254/jjp.60.91
  76. Gizycki MJ, Adelroth E, Rogers AV, O'Byrne PM, Jeffery PK. Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am J Respir Cell Mol Biol. 1997;16(6):664-73. https://doi.org/10.1165/ajrcmb.16.6.9191468
  77. Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomarkaj M, Bellia V, et al. Airway remodeling in asthma. Chest. 2003;123(3):417S-22S.
  78. Smith TL, Sautter NB. Is montelukast indicated for treatment of chronic rhinosinusitis with polyposis? Laryngoscope. 2014;124(8):1735-6. https://doi.org/10.1002/lary.24477
  79. Ashcroft GS. Bidirectional regulation of macrophage function by $TGF-{\beta}$. Microbes Infect. 1999;1(15):1275-82. https://doi.org/10.1016/S1286-4579(99)00257-9
  80. Wahl SM. Transforming growth factor beta ($TGF-{\beta}$) in inflammation: a cause and a cure. J Clin Immunol. 1992;12(2):61-74. https://doi.org/10.1007/BF00918135
  81. Danielpour D, Dart LL, Flanders KC, Roberts AB, Sporn MB. Immunodetection and quantitation of the two forms of transforming growth factor-beta ($TGF-{\beta}1$ and $TGF-{\beta}2$) secreted by cells in culture. J Cell Physiol. 1989;138(1):79-86. https://doi.org/10.1002/jcp.1041380112
  82. Tintinger GR, Feldman C, Theron AJ, Anderson R. Montelukast: more than a cysteinyl leukotriene receptor antagonist? Sci World J. 2010;10:2403-13. https://doi.org/10.1100/tsw.2010.229
  83. Jones T, Labelle M, Belley M, Champion E, Charette L, Evans J, et al. Pharmacology of montelukast sodium ($Singulair^{TM}$), a potent and selective leukotriene D4 receptor antagonist. Can J Physiol Pharmacol. 1995;73(2):191-201. https://doi.org/10.1139/y95-028
  84. Peters-Golden M, Gleason M, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy. 2006;36(6):689-703. https://doi.org/10.1111/j.1365-2222.2006.02498.x
  85. Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med. 2007;357(18):1841-54. https://doi.org/10.1056/NEJMra071371
  86. Mastalerz L, Kumik J. Antileukotriene drugs in the treatment of asthma. Pol Arch Med Wewn. 2010;120(3):103-8.
  87. Pines M, Nagler A. Halofuginone: a novel antifibrotic therapy. Gen. Pharmacol. Vasc. S. 1998;30(4):445-50. https://doi.org/10.1016/S0306-3623(97)00307-8
  88. Granot I, Halevy O, Hurwitz S, Pines M. Halofuginone: an inhibitor of collagen type I synthesis. Biochim. Biophys. Acta Gen. Subj. 1993;1156(2):107-12. https://doi.org/10.1016/0304-4165(93)90123-P
  89. McGaha TL, Bona C, Phelps RG, Spiera H. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-${\beta}$-mediated Smad3 activation in fibroblasts. J Investig Dermatol. 2002;118(3):461-70. https://doi.org/10.1046/j.0022-202x.2001.01690.x
  90. Zeplin PH, Larena-Avellaneda A, Schmidt K. Surface modification of silicone breast implants by binding the antifibrotic drug halofuginone reduces capsular fibrosis. Plast Reconstr Surg. 2010;126(1):266-74. https://doi.org/10.1097/PRS.0b013e3181dbc313

Cited by

  1. Tradeoffs in Implant Selection for Reconstructive Surgery and Adjuncts Utilized to Maximize Aesthetic Outcomes : vol.144, pp.1, 2019, https://doi.org/10.1097/prs.0000000000005950
  2. Modulation of Foreign Body Reaction against PDMS Implant by Grafting Topographically Different Poly(acrylic acid) Micropatterns vol.19, pp.12, 2018, https://doi.org/10.1002/mabi.201900206
  3. Efficient reduction of fibrous capsule formation around silicone breast implants densely grafted with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers by heat-induced polymerization vol.8, pp.6, 2020, https://doi.org/10.1039/c9bm01802f
  4. Excessive fibrosis and non-function after ATOMS (adjustable transobturator male system): A case of capsular contracture? vol.32, pp.None, 2020, https://doi.org/10.1016/j.eucr.2020.101241
  5. The Application of Dual‐Layer, Mussel‐Inspired, Antifouling Polyglycerol‐Based Coatings in Ventricular Assist Devices vol.7, pp.21, 2018, https://doi.org/10.1002/admi.202000272
  6. Breast Implants : A Historical Review With Implications for Diagnosis and Modern Surgical Planning vol.87, pp.2, 2021, https://doi.org/10.1097/sap.0000000000002731
  7. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces vol.121, pp.None, 2021, https://doi.org/10.1016/j.actbio.2020.11.020
  8. Optimization of oxygen plasma treatment of silicone implant surface for inhibition of capsular contracture vol.97, pp.None, 2018, https://doi.org/10.1016/j.jiec.2021.02.004
  9. Ultrastructural features of the double capsulated connective tissue around silicone prostheses vol.84, pp.6, 2018, https://doi.org/10.1002/jemt.23673
  10. Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction vol.10, pp.7, 2021, https://doi.org/10.3390/cells10071794
  11. Silicone Breast Implant Coated with Triamcinolone Inhibited Breast-Implant-Induced Fibrosis in a Porcine Model vol.14, pp.14, 2021, https://doi.org/10.3390/ma14143917
  12. Current Concepts in Capsular Contracture: Pathophysiology, Prevention, and Management vol.35, pp.3, 2018, https://doi.org/10.1055/s-0041-1731793
  13. Silicone Implants Immobilized with Interleukin-4 Promote the M2 Polarization of Macrophages and Inhibit the Formation of Fibrous Capsules vol.13, pp.16, 2018, https://doi.org/10.3390/polym13162630
  14. Antifouling and Mechanical Properties of Photografted Zwitterionic Hydrogel Thin-Film Coatings Depend on the Cross-Link Density vol.7, pp.9, 2018, https://doi.org/10.1021/acsbiomaterials.1c00852
  15. Physics and Physiology of Cell Spreading in Two and Three Dimensions vol.36, pp.6, 2018, https://doi.org/10.1152/physiol.00020.2021
  16. Comparing the Antimicrobial Effect of Silver Ion-Coated Silicone and Gentamicin-Irrigated Silicone Sheets from Breast Implant Material vol.45, pp.6, 2018, https://doi.org/10.1007/s00266-021-02348-7
  17. Short-term treatment outcomes and safety of two representative brands of the fifth-generation silicone gel-filled breast implants in Korea vol.55, pp.6, 2021, https://doi.org/10.1080/2000656x.2021.1888744