DOI QR코드

DOI QR Code

Recent updates for biomaterials used in total hip arthroplasty

  • Hu, Chang Yong (Center for Joint Disease, Chonnam National University Hwasun Hospital) ;
  • Yoon, Taek-Rim (Center for Joint Disease, Chonnam National University Hwasun Hospital)
  • Received : 2018.06.21
  • Accepted : 2018.10.03
  • Published : 2018.12.31

Abstract

Background: Total hip arthroplasty (THA) is probably one of the most successful surgical interventions performed in medicine. Through the revolution of hip arthroplasty by principles of low friction arthroplasty was introduced by Sir John Charnley in 1960s. Thereafter, new bearing materials, fixation methods, and new designs has been improved. The main concern regarding failure of THA has been the biological response to particulate polyethylene debris generated by conventional metal on polyethylene bearing surfaces leading to osteolysis and aseptic loosening of the prosthesis. To resolve these problems, the materials of the modern THA were developed since then. Methods: A literature search strategy was conducted using various search terms in PUBMED. The highest quality articles that met the inclusion criteria and best answered the topics of focus of this review were selected. Key search terms included 'total hip arthroplasty', 'biomaterials', 'stainless steel', 'cobalt-chromium', 'titanium', 'polyethylene', and 'ceramic'. Results: The initial search retrieved 6921 articles. Thirty-two articles were selected and used in the review. Conclusion: This article introduces biomaterials used in THA and discusses various bearing materials in currentclinical use in THA as well as the newer biomaterials which may even further decrease wear and improve THA survivorship.

Keywords

References

  1. National Joint Registry for England. Wales, Northern Ireland and the Isle of Man. 13th AnnualReport.http://www.njrcentre.org.uk/njrcentre/Portals/0/Documents/England/Reports/13th%20Annual%20Report/07950%20NJR%20Annual%20Report%202016%20ONLINE%20REPORT.pdf. Accessed 2016.
  2. Maradit Kremers H, Larson DR, Crowson CS, et al. Prevalence of TotalHip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97:1386-97. https://doi.org/10.2106/JBJS.N.01141.
  3. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and kneearthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780-5. https://doi.org/10.2106/JBJS.F.00222
  4. Health Insurance Review & Assessment Service, Korea Healthcare Bigdata Hub. http://opendata.hira.or.kr/op/opc/olapDiagBhvInfo.do. Accessed 14 Sept 2018.
  5. Miura K, Yamada N, Hanada S, Jung TK, Itoi E. The bone tissue compatibility of a new Ti-Nb-Sn alloywith a low Young's modulus. Acta Biomater. 2011;7:2320-6. https://doi.org/10.1016/j.actbio.2011.02.008
  6. Guo S, Bao ZZ, Meng QK, Hu L, Zhao XQ. A novel metastable Ti-25Nb-2Mo-4Sn alloy with high strength and low Young's modulus. Metall Mater Trans A Phys Metall Mater Sci. 2012;43:3447-51. https://doi.org/10.1007/s11661-012-1324-0
  7. Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki A, Fukui H, Niwa S. Development of lowrigidity beta-type titanium alloy for biomedical applications. Mater Trans. 2002;43:2970-7. https://doi.org/10.2320/matertrans.43.2970
  8. Okazaki Y. A new Ti-15Zr-4Nb-4Ta alloy for medical applications. Curr Opin Solid State Mater Sci. 2001;5:45-53. https://doi.org/10.1016/S1359-0286(00)00025-5
  9. Bai X, Sandukas S, Appleford MR, Ong JL, Rabiei A. Deposition and investigation of functionallygraded calcium phosphate coatings on titanium. Acta Biomater. 2009;5:3563-72. https://doi.org/10.1016/j.actbio.2009.05.013
  10. Bai X, Sandukas S, Appleford MR, Ong JL, Rabiei A. Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res Part B Appl Biomaterials. 2012;100:553-61.
  11. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27:5512-7. https://doi.org/10.1016/j.biomaterials.2006.07.003
  12. Ong JL, Lucas LC, Lacefield WR, Rigney ED. Structure solubility and bond strength of thin calcium-phosphate coatings produced by ion-beam sputter deposition. Biomaterials. 1992;13:249-54. https://doi.org/10.1016/0142-9612(92)90192-Q
  13. Yang YZ, Kim KH, Ong JL. Review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials. 2005;26:327-37. https://doi.org/10.1016/j.biomaterials.2004.02.029
  14. Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32:409-17. https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
  15. Kim HM, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T. Graded surface structure of bioactive titanium prepared by chemical treatment. J Biomed Mater Res. 1999;45:100-7. https://doi.org/10.1002/(SICI)1097-4636(199905)45:2<100::AID-JBM4>3.0.CO;2-0
  16. Kim HM, Takadama H, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T. Formation of bioactivefunctionally graded structure on Ti-6Al-4V alloy by chemical surface treatment. J Mater Sci Mater Med. 2000;11:555-9. https://doi.org/10.1023/A:1008924102096
  17. Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater. 2010;6:2836-42. https://doi.org/10.1016/j.actbio.2010.01.007
  18. Kokubo T, Pattanayak DK, Yamaguchi S, Takadama H, Matsushita T, Kawai T, Takemoto M, Fujibayashi S, Nakamura T. Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J R Soc Interface. 2010;7:503-13.
  19. Oral E, Christensen SD, Malhi AS, Wannomae KK, Muratoglu OK. Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J Arthroplast. 2006;21:580-91. https://doi.org/10.1016/j.arth.2005.07.009
  20. Oral E, Muratoglu OK. Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop. 2011;35:215-23. https://doi.org/10.1007/s00264-010-1161-y
  21. Kyomoto M, Moro T, Konno T, Takadama H, Yamawaki N, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Enhanced wear resistance of modified cross-linked polyethylene by grafting with poly(2-methacryloyloxyethyl phosphorylcholine). J Biomed Mater Res Part A. 2007;82(1):10-7.
  22. Kyomoto M, Moro T, Iwasaki Y, Miyaji F, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Superlubricious surface mimicking articular cartilage by grafting poly(2-methacryloyloxyethyl phosphorylcholine) on orthopaedic metal bearings. J Biomed Mater Res Part A. 2009;91:730-41.
  23. Clarke IC, Manaka M, Green DD, Williams P, Pezzotti G, Kim YH, Ries M, Sugano N, Sedel L, Delauney C, et al. Current status of zirconia used in total hip implants. J Bone Joint Surg Am. 2003;85:73-84. https://doi.org/10.2106/00004623-200300004-00009
  24. Begand S, Oberbach T, Glien W. Investigations of the mechanical properties of an alumina toughened zirconia ceramic for an application in joint prostheses. Key Eng Mater. 2005;284:1019-22.
  25. Al-Hajjar M, Jennings LM, Begand S, Oberbach T, Delfosse D, Fisher J. Wear of novel ceramic-on-ceramic bearings under adverse and clinically relevant hip simulator conditions. J Biomed Mater Res Part B Appl Biomater. 2013;101:1456-62. https://doi.org/10.1002/jbm.b.32965
  26. Hobbs LW, Rosen VB, Mangin SP, Treska M, Hunter G. Oxidation microstructures and interfaces in the oxidized zirconium knee. Int J Appl Ceram Technol. 2005;2:221-46. https://doi.org/10.1111/j.1744-7402.2005.02025.x
  27. Good V, Ries M, Barrack RL, Widding K, Hunter G, Heuer D. Reduced wear with oxidized zirconium femoral heads. J Bone Joint Surg Am. 2003;85:105-10. https://doi.org/10.2106/00004623-200300004-00013
  28. Burger W, Richter HG. High strength and toughness alumina matrix composites by transformationtoughening and 'in situ' platelet reinforcement (ZPTA)-the new generation of bioceramics. Key Eng Mater. 2000;192-5:545-8.
  29. McKee GK, Watson-Farrar J. Replacement of arthritic hips by the McKee-Farrar prosthesis. J Bone Joint Surg Br. 1966;48(2):245-59. https://doi.org/10.2106/00004623-196648020-00003
  30. Triclot P. Metal-on-metal: history, state of the art. Int Orthop. 2011;35(2):201-6. https://doi.org/10.1007/s00264-010-1180-8
  31. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370:1508-19. https://doi.org/10.1016/S0140-6736(07)60457-7.
  32. Berry DJ, Harmsen WS, Cabanela ME, Morrey BF. Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: factors affecting survivorship of acetabular and femoral components. J Bone Joint Surg Am. 2002;84-A:171-7.
  33. Boutin P. Total arthroplasty of the hip by fritted alumina prosthesis. Experimental study and 1st clinical applications. Orthop Traumatol Surg Res. 2014;100:15-21. https://doi.org/10.1016/j.otsr.2013.12.004
  34. Howmedica I. Strength for Life : The Vitallium Alloy Story. Rutherord: Howmedica Inc.; 1995.
  35. Bronzino JD. The Biomedical Engineering Handbook. 2nd ed: CRC Press; 1999.
  36. Head WC, Bauk DJ, Emerson RH. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop Relat Res. 1995;311:85-90.
  37. Branemark PI, George AZ, Tomas A. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence; 1985. p. 1-76.
  38. Landor I, Vavrik P, Sosna A, Jahoda D, Hahn H, Daniel M. Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch Orthop Trauma Surg. 2007;127(2):81-9. https://doi.org/10.1007/s00402-006-0235-1
  39. Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitrobiological properties. Acta Biomater. 2010;6(8):3349-59. https://doi.org/10.1016/j.actbio.2010.01.046
  40. Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M. Porous metal for orthopedics implants. Clin Cases Miner Bone Metab. 2013;10(2):111-5.
  41. Charnley J. Arthroplasty of the hip: a new operation. Lancet. 1961;1:1129-32.
  42. Hopper RH Jr, Young AM, Orishimo KF, Engh CA Jr. Effect of terminal sterilization with gas plasma or gammaradiation on wear of polyethylene liners. J Bone Joint Surg Am 2003;85:464-468. https://doi.org/10.2106/00004623-200303000-00010
  43. McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Effect of sterilization method and other modifications on the wearresistance of acetabular cups made of ultra-high molecular weightpolyethylene. A hip-simulator study. J Bone Joint Surg Am. 2000;82:1708-25. https://doi.org/10.2106/00004623-200012000-00004
  44. Devane PA, Horne JG, Martin K, Coldham G, Krause B. Three-dimensional polyethylene wear of a press-fit titaniumprosthesis. Factors influencing generation of polyethylene debris. J Arthroplasty. 1997;12:256-66. https://doi.org/10.1016/S0883-5403(97)90021-8
  45. Young AM, Sychterz CJ, Hopper RH Jr, Engh CA. Effectof acetabular modularity on polyethylene wear and osteolysis intotal hip arthroplasty. J Bone Joint Surg Am 2002; 84:58-63. https://doi.org/10.2106/00004623-200201000-00009
  46. Harris WH. The problem is osteolysis. Clin Orthop Relat Res. 1995;311:46-53.
  47. Kim YH, Kim JS, Park JW, Joo JH. Periacetabular osteolysis is the problem in contemporary total hip arthroplasty in young patients. J Arthroplast. 2012;27:74-81. https://doi.org/10.1016/j.arth.2011.03.022
  48. Digas G, Karrholm J, Thanner J, Malchau H, Herberts P. Highly cross-linked polyethylene in total hip arthroplasty: randomizedevaluation of penetration rate in cemented and uncementedsockets using radiostereometric analysis. Clin Orthop Relat Res. 2004;429:6-16. https://doi.org/10.1097/01.blo.0000150314.70919.e3
  49. Manning DW, Chiang PP, Martell JM, et al. In vivo comparative wear study of traditional and highly cross-linked polyethylene in total hip arthroplasty. J Arthroplast. 2005;20(7):880-6. https://doi.org/10.1016/j.arth.2005.03.033
  50. Martell JM, Verner JJ, Incavo SJ. Clinical performance of a highly cross-linked polyethylene at two years in total hip arthroplasty: a randomized prospective trial. J Arthroplast. 2003;18(7 suppl 1):55-9.
  51. Collier JP, Currier BH, Kennedy FE, et al. Comparison of cross-linked polyethylene materials for orthopaedic applications. Clin Orthop Relat Res. 2003;414:289-304. https://doi.org/10.1097/01.blo.0000073343.50837.03
  52. Muratoglu OK, Bragdon CR, O'Connor DO, et al. Unified wear model for highly cross-linked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials. 1999;20(16):1463-70. https://doi.org/10.1016/S0142-9612(99)00039-3
  53. Chiesa R, Tanzi MC, Alfonsi S, et al. Enhanced wear performance of highly crosslinked UHMWPE for artificial joints. J Biomed Mater Res. 2000;50(3):381-7. https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<381::AID-JBM12>3.0.CO;2-P
  54. Muratoglu OK, Greenbaum ES, Bragdon CR, et al. Surface analysis of early retrieved acetabular polyethylene liners: A comparison of conventional and highly crosslinked polyethylene. J Arthroplasty. 2004;19(1):68-77. https://doi.org/10.1016/j.arth.2003.08.003
  55. Dumbleton JH, D'Antonio JA, Manley MT, Capello WN, Wang A. The basis for a second-generation highly cross-linked UHMWPE. Clin Orthop Relat Res. 2006;453:265-71. https://doi.org/10.1097/01.blo.0000238856.61862.7d
  56. Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym J. 2015;47:585-97. https://doi.org/10.1038/pj.2015.45
  57. Hannouche D, Hamadouche M, Nizard R, et al. Ceramics in total hip replacement. Clin Orthop Relat Res. 2005;430:62-71.
  58. Clarke IC, Good V, Williams P, Schroeder D, Anissian L, Stark A, Oonishi H, Schuldies J, Gustafson G. Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc Inst Mech Eng H. 2000;214:331-47. https://doi.org/10.1243/0954411001535381
  59. Jeffers JR, Walter WL. Ceramic-on-ceramic bearings in hip arthroplasty: state of the art and the future. J Bone Joint Surg Br. 2012;94(6):735-45.
  60. Kurtz SM. UHMWPE Biomaterials Handbook. 2nd ed. Boston, mass: Academic Press; 2009.
  61. Masonis JL, Bourne RB, Ries MD, et al. Zirconia femoral head fractures: A clinical and retrieval analysis. J Arthroplasty. 2004;19(7):898-905. https://doi.org/10.1016/j.arth.2004.02.045
  62. De Aza AH, Chevalier J, Fantozzi G, et al. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials. 2002;23(3):937-45. https://doi.org/10.1016/S0142-9612(01)00206-X
  63. Allain J, Le Mouel S, Goutallier D, et al. Poor eight-year survival of cemented zirconia-polyethylene total hip replacements. J bone Joint Surg Br. 1999;81(5):835-42. https://doi.org/10.1302/0301-620X.81B5.0810835
  64. Masonis JL, Bourne RB, Ries MD, McCalden RW, Salehi A, Kelman DC. Zirconia femoral head fractures: a clinical and retrieval analysis. J Arthroplast. 2004;19:898-905. https://doi.org/10.1016/j.arth.2004.02.045
  65. Santos EM, Vohra S, Catledge SA, McClenny MD, Lemons J, Moore KD. Examination of surface and material properties of explantedzirconia femoral heads. J Arthroplast. 2004;19(7Suppl 2):30-4. https://doi.org/10.1016/j.arth.2004.06.017
  66. Chevalier J. What future for zirconia as a biomechanical? Biomaterials. 2006;27(4):535-43. https://doi.org/10.1016/j.biomaterials.2005.07.034
  67. Bal BS, Rahaman MN. Orthopedic applications of silicon nitride ceramics. Acta Biomater. 2012;8:2889-98. https://doi.org/10.1016/j.actbio.2012.04.031
  68. McEntire BJ, Bal BS, Rahaman MN, Chevalier J, Pezzotti G. Ceramics and ceramic coatings in orthopaedics. J Eur Ceram Soc. 2015;35:4327-69. https://doi.org/10.1016/j.jeurceramsoc.2015.07.034
  69. Chen FC, Ardell AJ. Fracture toughness of ceramics and semi-brittle alloys using a miniaturized disk-bend test. Mater Res Innov. 2000;3:250-62. https://doi.org/10.1007/PL00010875
  70. Bal BS, et al. Fabrication and testing of silicon nitride bearingsin total hip arthroplasty. J Arthroplast. 2009;24(1):110-6. https://doi.org/10.1016/j.arth.2008.01.300
  71. McEntire BJ, Lakshminarayanan R, Ray DA, Clarke IC, Puppulin L, Pezzotti G. Silicon nitride bearings for total joint arthroplasty. Lubricants. 2016;4:35. https://doi.org/10.3390/lubricants4040035
  72. Tribe H, Malek S, Stammers J, et al. Advanced wear of an $Oxinium^{TM}$ femoral head implant following polyethylene liner dislocation. Ann R Coll Surg Engl. 2013;95(8):133-5. https://doi.org/10.1308/003588413X13629960047876
  73. Hernigou P, Mathieu G, Poingnard A, et al. Oxinium, a new alternative femoral bearing surface option for hip replacement. Eur J Orthop Surg Traumatol. 2007;17(3):243-6. https://doi.org/10.1007/s00590-006-0180-2
  74. Kop AM, Whitewood C, Johnston DJ. Damage of Oxinium femoral heads subsequent to hip arthroplasty dislocation: Three retrieval case studies. J Arthroplasty. 2007;22(5):775-9. https://doi.org/10.1016/j.arth.2006.07.005
  75. Lewis PM, Moore CA, Olsen M, Schemitsch E, Waddell JP. Comparison of mid-term clinical outcomes following primarytotal hip arthroplasty with Oxinium versus cobalt chromefemoral heads. Orthopedics. 2008;31(12Supppl2).
  76. Abu-Amer Y, Darwech I, Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9:S6.
  77. Narayan RJ. Nanostructured diamondlike carbon thin films for medical applications. Mater Sci Eng C. 2005;25:405-16. https://doi.org/10.1016/j.msec.2005.01.026
  78. Pappas MJ, Makris G, Buechel FF. Titanium nitride ceramic film against polyethylene: A 48-million cycle wear test. Clin Orthop Relat Res. 1995;317:64-70.
  79. Hauert R, Falub CV, Thorwarth G, Thorwarth K, Affolter C, Stiefel M, Podleska LE, Taeger G. Retrospective lifetime estimation of failed and explanted diamond-like carbon coated hip joint balls. Acta Biomater. 2012;8:3170-6. https://doi.org/10.1016/j.actbio.2012.04.016
  80. Catledge SA, Vohra YK. Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations. J Appl Phys. 1999;86:698-700. https://doi.org/10.1063/1.370787
  81. Catledge SA, Vaid R, Diggins P, Weimer JJ, Koopman M, Vohra YK. Improved adhesion of ultra-hard carbon films on cobalt-chromium orthopaedic implant alloy. J Mater Sci Mater Med. 2011;22:307-16. https://doi.org/10.1007/s10856-010-4207-1
  82. Papo MJ, Catledge SA, Vohra YK. Mechanical wear behavior of nanocrystalline and multilayer diamond coatings on temporomandibular joint implants. J Mater Sci Mater Med. 2004;15:773-7. https://doi.org/10.1023/B:JMSM.0000032817.05997.d2
  83. Vila M, Amaral M, Oliveira FJ, Silva RF, Fernandes AJS, Soares MR. Residual stress minimum in nanocrystalline diamond films. Appl Phys Lett. 2006;89:093109. https://doi.org/10.1063/1.2339042
  84. Kumar N, Arora GN, Datta B. Bearing surfaces in hip replacement-evolution and likely future. Med J Armed Forces India. 2014;70(4):371-6. https://doi.org/10.1016/j.mjafi.2014.04.015
  85. Charnley J, Kamangar A, Longfield MD. The optimum size of prosthetic heads in relation to wear of plastic sockets in total replacement of hip. Med Biol Eng. 1969;7:31-9. https://doi.org/10.1007/BF02474667
  86. Tsukamoto M, Mori T, Ohnishi H, Uchida S, Sakai A. Highly cross-linked polyethylene reduces Osteolysis incidence and Wear-related reoperation rate in Cementless Total hip arthroplasty compared with conventional polyethylene at a mean 12-year follow-up. J Arthroplast. 2017;32(12):3771-6. https://doi.org/10.1016/j.arth.2017.06.047.
  87. Vendittoli PA, Riviere C, Lavigne M, Lavoie P, Alghamdi A, Duval N. Aluminaon alumina versus metal on conventional polyethylene: a randomizedclinical trial with 9 to 15 years follow-up. Acta Orthop Belg. 2013;79:181-90.
  88. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E. Polyethylene particles of a 'critical size' are necessary for theinduction of cytokines by macrophages in vitro. Biomaterials. 1998;19:2297-302. https://doi.org/10.1016/S0142-9612(98)00140-9
  89. Dumbleton JH, Manley MT, Edidin AA. A literature review ofthe association between wear rate and osteolysis in total hiparthroplasty. J Arthroplast. 2002;17:649-61. https://doi.org/10.1054/arth.2002.33664
  90. D'Antonio JA, Capello WN, Naughton M. Ceramic bearings for total hiparthroplasty have high survivorship at 10 years. Clin Orthop Relat Res. 2012;470:373-81. https://doi.org/10.1007/s11999-011-2076-7
  91. Brach del Prever EM, Bistolfi A, Bracco P, Costa L. UHMWPE for arthroplasty: past or future? J Orthop Traumatol. 2009;10:1-8.
  92. Oral E, Christensen SD, Malhi AS, Wannomae KK. MuratogluOK. Wear resistance and mechanical properties of highlycross-linked, ultrahighmolecular weight polyethylene dopedwith vitamin E. J Arthroplast. 2006;21:580-91. https://doi.org/10.1016/j.arth.2005.07.009
  93. Bragdon CR, Doerner M, Martell J, Jarrett B, Palm H, Malchau H. The 2012 John Charnley award: clinical multicenter studies of the wear performance of highly crosslinked remelted polyethylene in THA. Clin Orthop Relat Res. 2013;471:393-402. https://doi.org/10.1007/s11999-012-2604-0
  94. McKellop HA, Campbell P, Park SH, Schmalzried TP, Grigoris P, Amstutz HC, Sarmiento A. The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin Orthop Relat Res. 1995;311:3-20.
  95. McMinn D, Daniel J. History and modern concepts in surface replacement. Proc lnst Mech EngH. 2006;220:239-51.
  96. Daniel J, Pynsent PB, McMinn DJ. Metal-on-metal resurfacing of the hip inpatients under the age of 55 years with osteoarthritis. J Bone Joint Surg Br. 2004;86:177-84.
  97. Mauricio S, Christian H, Thomas P. Metal-on-Metal Total Hip Replacement. Clin Orthop Relate Res. 2005;430:53-61.
  98. Moon JK, Kim Y, Hwang KT, Yang JH, Oh YH, Kim YH. Long-term outcomes after metal-on-metal Total hip arthroplasty with a 28-mm head: a 17- to 23-year follow-up study of a previous report. J Arthroplast. 2018. https://doi.org/10.1016/j.arth.2018.02.089.
  99. Hur CI, Yoon TR, Cho SG, Song EK, Seon JK. Serum ion level after metal-onmetal THA in patients with renal failure. Clin Orthop Relat Res. 2008;466(3):696-9. https://doi.org/10.1007/s11999-007-0093-3.
  100. National Joint Registry for England. Wales, Northern Ireland and the Isle of Man. 5th Annual Report. http://www.njrcentre.org.uk/njrcentre/Portals/0/Documents/England/Reports/5th%20Annual.pdf. Accessed 2008.
  101. Australian Orthopaedic Association National Joint Replacement Registry Annual Report. https://aoanjrr.sahmri.com/documents/10180/42662/Annual%20Report%202008?version=1.1&t=1349406277970. Asscessed 2008.
  102. Willert HG, Buchhorn GH, Fayyazi A, et al. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphologicalstudy. J Bone Joint Surg Am. 2005;87:28-36.
  103. Jacobs JJ, Hallab NJ. Loosening and osteolysis associated with metal-onmetalbearings: a local effect of metal hypersensitivity? J Bone Joint Surg Am. 2006;88:1171-2.
  104. Brodner W, Bitzan P, Meisinger V, Kaider A, Gottsauner-Wolf F, Kotz R. Elevated serum cobalt with metal-on-metal articulating surfaces. J Bone Joint Surg Br. 1997;79(2):316-21. https://doi.org/10.1302/0301-620X.79B2.0790316
  105. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am. 2000;82:457-76.
  106. Case CP. Chromosomal changes after surgery for joint replacement. J Bone Joint Surg Br. 2001;83(8):1093-5. https://doi.org/10.1302/0301-620X.83B8.0831093
  107. Smith AJ, Dieppe P, Porter M, Blom AW. National Joint Registry of England and Wales Risk of cancer in first seven years after metal-on-metal hip replacement compared with other bearings and general population: linkage study between the National Joint Registry of England and Wales and hospital episode statistics. BMJ. 2012;344:e2383. https://doi.org/10.1136/bmj.e2383
  108. Korovessis P, Petsinis G, Repanti M, Repantis T. Metallosis after contemporarymetal-on-metal total hip arthroplasty. Five to nine-year followup. J BoneJoint Surg Am. 2006;88:1183-91. https://doi.org/10.2106/00004623-200606000-00003
  109. Milosev I, Trebse R, Kovac S, Cor A, Pisot V. Survivorship and retrieval analysisof Sikomet metal-on-metal total hip replacements at a mean of seven years. J Bone Joint Surg Am. 2006;88:1173-82. https://doi.org/10.2106/JBJS.E.00604.
  110. Park YS, Moon YW, Lim SJ, Yang JM, Ahn G, Choi YL. Early osteolysisfollowing second-generation metal-on-metal hip replacement. J Bone Joint Surg Am. 2005;87:1515-21. https://doi.org/10.2106/JBJS.D.02641.
  111. Administration FAD. List of Device Recalls. ... fda. gov/medicaldevices/safety/ListofRecalls/default ...; 2014; https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?start_search=1&event_id=&productdescriptiontxt=hip%20arthroplasty&productcode=&IVDProducts=&rootCauseText=&recallstatus=¢erclassificationtypetext=&recallnumber=&postdatefrom=&postdateto=&productshortreasontxt=&knumber=&PAGENUM=500. Accessed 06 Feb 2018.
  112. Boutin P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev Chir Orthop Reparatrice Appar Mot. 1972;58:229-46.
  113. Jonathan PG. Ceramic hip replacement history. Semin Arthroplast. 2011;22(4):214-7. https://doi.org/10.1053/j.sart.2011.10.003
  114. Kurtz SM, Ong K. Contemporary total hip arthroplasty: Hard-on hard bearings and highly crosslinked UHMWPE. In: Kurtz SM, editor. UHMWPE Biomaterials Handbook. 2nd ed. Burlington: Academic(Elsevier); 2009. p. 55-79.
  115. Williams S, Schepers A, Isaac G, Hardaker C, Ingham E, van der Jagt D, Breckon A, Fisher J. The 2007 Otto Aufranc award. Ceramic-on-metalhip arthroplasties: a comparative in vitro and in vivo study. Clin Orthop Relat Res. 2007;465:23-32.
  116. Park KS, Seon JK, Yoon TR. The survival analysis in third-generation ceramicon-ceramic Total hip arthroplasty. J Arthroplast. 2015;30(11):1976-80. https://doi.org/10.1016/j.arth.2015.05.017.
  117. Lewis PM, Al-Belooshi A, Olsen M, Schemitch EH, Waddell JP. Prospective randomized trial comparing alumina ceramic-on-ceramic with ceramic-onconventional polyethylene bearings in total hip arthroplasty. J Arthroplasty. 2010;25(3):392-7. https://doi.org/10.1016/j.arth.2009.01.013
  118. Kubo T, Sawada K, Hirakawa K, Shimizu C, Takamatsu T, Hirasawa Y. Histiocyte reaction in rabbit femurs to UHMWPE, metal, and ceramicparticles in different sizes. J Biomed Mater Res. 1999;45(4):363-9. https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<363::AID-JBM11>3.0.CO;2-3
  119. Hernigou P, Zilber S, Filippini P, Poignard A. Ceramic-ceramic bearing decreases osteolysis: a 20-year study versus ceramic-polyethylene on the contralateral hip. Clin Orthop Relat Res. 2009;467:2274-80. https://doi.org/10.1007/s11999-009-0773-2
  120. Si HB, Zeng Y, Cao F, Pei FX, Shen B. Is a ceramic-on-ceramic bearing really superiorto ceramic-on-polyethylene for primary total hiparthroplasty? A systematic review and meta-analysisof randomised controlled trials. Hip Int. 2015;25(3):191-8. https://doi.org/10.5301/hipint.5000223.
  121. Glaser D, Komistek RD, Cates HE, Mahfouz MR. Clicking and squeaking:in vivo correlation of sound and separation for different bearingsurfaces. J Bone Joint Surg Am. 2008;90(Suppl(4):112-20. https://doi.org/10.2106/JBJS.H.00627
  122. Yang CC, Kim RH, Dennis DA. The squeaking hip: a cause for concerndisagrees. Orthopedics. 2007;30:739. https://doi.org/10.3928/01477447-20070901-33
  123. Ranawat AS, Ranawat CS. The squeaking hip: a cause for concern-agrees. Orthopedics. 2007;30:738. https://doi.org/10.3928/01477447-20070901-32
  124. Lusty PJ, Tai CC, Sew-Hoy RP, Walter WL, Walter WK, Zicat BA. Thirdgeneration alumina-on-alumina ceramic bearings incementless total hip arthroplasty. J Bone Joint Surg Am. 2007;89:2676-83. https://doi.org/10.2106/JBJS.F.01466
  125. Hamilton WG, McAuley JP, Dennis DA, Murphy JA, Blumenfeld TJ, Politi J. THA with Delta ceramic on ceramic: results of a multicenter investigational device exemption trial. Clin Orthop Relat Res. 2010;468:358-66. https://doi.org/10.1007/s11999-009-1091-4
  126. Haq RU, Park KS, Seon JK, Yoon TR. Squeaking after third-generation ceramic-on-ceramic total hip arthroplasty. J Arthroplast. 2012;27(6):909-15. https://doi.org/10.1016/j.arth.2011.10.001.
  127. Lancaster JG, Dowson D, Isaac GH, Fisher J. The wear of ultra-high molecular weight polyethylene sliding on metallic and ceramic counterfaces representative of current femoral surfaces in joint replacement. Proc Inst Mech Eng H. 1997;211(1):17-24.
  128. Callaway GH, Flynn W, Ranawat CS, Sculco TP. Fracture of the femoral headafter ceramic-on-polyethylene total hip arthroplasty. J Arthroplast. 1995;10:855-9. https://doi.org/10.1016/S0883-5403(05)80087-7
  129. Lehil MS, Bozic KJ. Trends in total hip arthroplasty implant utilization in theUnited states. J Arthroplast. 2014;29:1915-8. https://doi.org/10.1016/j.arth.2014.05.017.
  130. Rieger W. Ceramics in orthopaedics - 30 years of evolution and experience. In: Reiker CB, Oberholzer S, Wyss U, editors. World tribology forum in arthroplasty. Berne: Hans Huber Verlag; 2001.
  131. Heisel C, Silva M, Schmalzried TP. Bearing surface options fortotal hip replacement in young patients. Instr Course Lect. 2004;53:49-65.
  132. Della Valle AG, Doty S, Gradl G, Labissiere A, Nestor BJ. Wear ofa highly cross-linked polyethylene liner associated with metallicdeposition on a ceramic femoral head. J Arthroplast. 2004;19(4):532-6. https://doi.org/10.1016/j.arth.2003.12.065
  133. Magnissalis EA, Eliades G, Eliades T. Multitechnique characterization of articular surfaces of retrieved ultrahigh molecular weight polyethylene acetabular socket. J Biomed Mater Res. 1999;48(3):365-73. https://doi.org/10.1002/(SICI)1097-4636(1999)48:3<365::AID-JBM22>3.0.CO;2-T
  134. Collier JP, Bargmann LS, Currier BH, Mayor MB, Currier JH, Bargmann BC. An analysis of hylamer and polyethylene bearings from retrieved acetabular components. Orthopedics. 1998;21(8):865-71.
  135. Crockett R, Roba M, Naka M, Gasser B, Delfosse D, Frauchiger V, Spencer ND. Friction, lubrication, and polymer transfer between UHMWPE and CoCrMo hip-implant materials: a fluorescence microscopy study. J Biomed Mater Res A. 2009;89(4):1011-8.
  136. McKellop HA. The lexicon of polyethylene wear in artificial joints. Biomaterials. 2007;28(34):5049-57. https://doi.org/10.1016/j.biomaterials.2007.07.040
  137. Berger RA, Jacobs JJ, Quigley LR, Rosenberg AG, Galante JO. Primary cementless acetabular reconstruction in patients younger than 50 years old. 7- to 11-year results. Clin Orthop Relat Res. 1997;344:216-226.
  138. Devane PA, Bourne RB, Rorabeck CH, MacDonald S, Robinson EJ. Measurement of polyethylene wear in metal-backed acetabular cups. II Clinical application. Clin Orthop Relat Res. 1995;319:317-26.
  139. Lusty PJ, Tai CC, Sew-Hoy RP, Walter WL, Walter WK, Zicat BA. Thirdgeneration alumina-on-alumina ceramic bearings in cementless total hip arthroplasty. J Bone Joint Surg Am. 2007;89:2676-83. https://doi.org/10.2106/JBJS.F.01466

Cited by

  1. Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature vol.17, pp.None, 2018, https://doi.org/10.1016/j.ajoc.2020.100606
  2. Ten years on: increased metal ion levels in a cohort of patients who underwent uncemented metal-on-polyethylene total hip arthroplasty vol.b102, pp.7, 2018, https://doi.org/10.1302/0301-620x.102b7.bjj-2019-1372.r1
  3. The fabrication and characterization of bioengineered ultra-high molecular weight polyethylene-collagen-hap hybrid bone-cartilage patch vol.24, pp.None, 2018, https://doi.org/10.1016/j.mtcomm.2020.101052
  4. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications vol.10, pp.10, 2020, https://doi.org/10.3390/nano10102019
  5. Periacetabular osteotomy vs. total hip arthroplasty in young active patients with dysplastic hip: Systematic review and meta-analysis vol.106, pp.8, 2020, https://doi.org/10.1016/j.otsr.2020.08.012
  6. Model-Based Roentgen Stereophotogrammetric Analysis Using Elementary Geometrical Shape Models: Reliability of Migration Measurements for an Anatomically Shaped Femoral Stem Component vol.10, pp.23, 2020, https://doi.org/10.3390/app10238507
  7. Finite Element Analysis of Surface Modification of Titanium Alloy Used for Hip Implant vol.1016, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/msf.1016.1544
  8. Reasons for Revision: Primary Total Hip Arthroplasty Mechanisms of Failure vol.29, pp.2, 2018, https://doi.org/10.5435/jaaos-d-19-00860
  9. Recommendations for return to sports after total hip arthroplasty are becoming less restrictive as implants improve vol.141, pp.3, 2021, https://doi.org/10.1007/s00402-020-03691-1
  10. Ceramic-on-ceramic articulation in press-fit total hip arthroplasty as a potential reason for early failure, what about the survivors: a ten year follow-up vol.45, pp.6, 2018, https://doi.org/10.1007/s00264-020-04895-1
  11. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty vol.12, pp.2, 2021, https://doi.org/10.3390/jfb12020038
  12. Biomaterial Properties of Femur Implant on Acetabulum Erosion: A Review vol.51, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/jbbbe.51.39
  13. Tribological performances of a novel biopolymeric material HD-HA for hip joint implants vol.10, pp.3, 2018, https://doi.org/10.1680/jemmr.20.00005
  14. An integrated benefit-risk assessment of cobalt-containing alloys used in medical devices: Implications for regulatory requirements in the European Union vol.125, pp.None, 2018, https://doi.org/10.1016/j.yrtph.2021.105004
  15. The morphological variation of acetabular defects in revision total hip arthroplasty-A statistical shape modeling approach vol.39, pp.11, 2018, https://doi.org/10.1002/jor.24995
  16. Fabrication and Characterization of New Functional Graded Material Based on Ti, Ta, and Zr by Powder Metallurgy Method vol.14, pp.21, 2021, https://doi.org/10.3390/ma14216609
  17. Preventing Staphylococcus aureus stainless steel‐associated infections in orthopedics. A systematic review and meta‐analysis of animal literature vol.39, pp.12, 2018, https://doi.org/10.1002/jor.24999
  18. Mid-term outcomes of the R3™ delta ceramic acetabular system in total hip arthroplasty vol.16, pp.None, 2021, https://doi.org/10.1186/s13018-020-02192-6
  19. Microstructure and Defect-Based Fatigue Mechanism Evaluation of Brazed Coaxial Ti/Al2O3 Joints for Enhanced Endoprosthesis Design vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247895
  20. Osteocytes Influence on Bone Matrix Integrity Affects Biomechanical Competence at Bone-Implant Interface of Bioactive-Coated Titanium Implants in Rat Tibiae vol.23, pp.1, 2022, https://doi.org/10.3390/ijms23010374