DOI QR코드

DOI QR Code

Utility of solid phase extraction for colorimetric determination of lead in waters, vegetables, biological and soil samples

  • Al-Mallah, Zakia (Chemistry Department, Faculty of Applied Science, Umm-Quarh University) ;
  • Amin, Alaa S. (Chemistry Department, Faculty of Science, Benha University)
  • Received : 2018.04.03
  • Accepted : 2018.07.16
  • Published : 2018.11.25

Abstract

A highly sensitive, selective and rapid method for the determination of lead based on the reaction of lead (II) with 5-(4'-chlorophenylazo)-6-hydroxypyrimidine-2,4-dione (CPAHPD) and the solid phase extraction of the Pb(II)-CPAHPD complex with Amberlite XAD-2000 was developed, in the presence of pH 5.6 buffer solution and Triton X-114 medium. CPAHPD reacts with lead to form a violet complex with a molar ratio of 2:1 (CPAHPD to lead). This complex was enriched by the solid phase extraction with Amberlite XAD-2000. An enrichment factor of 500 was obtained by elution of the complex from the resin with a minimal amount of isopentyl alcohol(0.2 mL). In isopentyl alcohol medium,the molar absorptivity of the complex is $1.13{\times}10^6L\;mol^{-1}cm^{-1}$ at 647 nm. Beer's law is obeyed in the range of $5.0-160ng\;mL^{-1}$ in the measured solution. The relative standard deviation for 10 replicate samples of $50ng\;mL^{-1}$ level is 1.26%. The detection and quantification limits reaches 1.5 and $4.7ng\;mL^{-1}$ in the original samples. The presented procedure was successfully applied for determination of lead content in real samples such as vegetables, waters, biological and soil samples with satisfactory results.

Keywords

References

  1. A.K. De, Environmental Chemistry, 3rd ed., New Age International (P) Limited, New Delhi, 1996 p. 263.
  2. R.A. Goyer, C.D. Klaassen, M.O. Amdur, J. Doull (Eds.), Casarett and Doull's Toxicology: The Basic Science of Poisons, 3rd ed., MacMillan Publishing Company, New York, 1986 p. 598.
  3. H.W. Nurnberg, Pollutants and Their Ecotoxicological Significance, Wiley, Chichester, 1985.
  4. World Health Organization (WHO), 53rd Report of Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series 896, (2000) Geneva, Switzerland.
  5. J.O. Nriagu, The Biochemistry of Lead in the Environmental, Elsevier, Amsterdam, 1978.
  6. US Environmental Protection Agency, Drinking Water Regulations; Maximum Contaminant Level Goals and National Primary Drinking Water Regulations for Lead and Copper, Federal Register, 1988 p. 315.
  7. Eurepean Commission Directive 98/83/EC, Brussels, Belgium, 1998.
  8. K. Ohta, W. Aoki, T. Mizuno, Microchim. Acta 1 (1990) 81.
  9. G. Zaray, D. DaoThi Phuong, I. Varga, T. Kanlor, E. Cseh, F. Fodor, Microchem. J. 51 (1995) 207. https://doi.org/10.1006/mchj.1995.1027
  10. B.G. Beltran, L.O. Leal, L. Ferrer, V. Cerda, Int. J. Environ. Anal. Chem. 95 (2015) 1054.
  11. M. Ghaedi, G. Karimipour, E. Alambarkat, A. Asfaram, M. Montazerozohori, S. Izadpanah, M. Soylak, Int. J. Environ. Anal. Chem. 95 (2015) 1030.
  12. M. Ghaedi, E. Asadpour, A. Vafaie, Bull. Chem. Soc. Jpn. 79 (2006) 432. https://doi.org/10.1246/bcsj.79.432
  13. M. Ghaedi, M.R. Fathi, A. Shokrollahi, F. Shajarat, Anal. Lett. 39 (2006) 1171. https://doi.org/10.1080/00032710600622167
  14. M. Ghaedi, F. Ahmadi, H. Karimi, S. Gharaghani, J. Korean Chem. Soc. 50 (2006) 23. https://doi.org/10.5012/jkcs.2006.50.1.023
  15. T. Satarpai, J. Shiowatana, A. Siripinyanond, Talanta 154 (2016) 504. https://doi.org/10.1016/j.talanta.2016.04.017
  16. C.-Y. Wang, B.-Y. Fang, M.-H. Yao, Y.-D. Zhao, Sens. Actuators B Chem. 228 (2016) 643. https://doi.org/10.1016/j.snb.2016.01.080
  17. K. Yin, F. Yu, D. Liu, Z. Xie, L. Chen, Sens. Actuators B Chem. 223 (2016) 799. https://doi.org/10.1016/j.snb.2015.10.014
  18. L. Chen, J. Li, L. Chen, ACS Appl. Mater. Interfaces 6 (2014) 15897. https://doi.org/10.1021/am503531c
  19. X. Cai, J. Li, Z. Zhang, G. Wang, X. Song, J. You, L. Chen, Talanta 120 (2014) 297. https://doi.org/10.1016/j.talanta.2013.12.019
  20. L. Chen, X. Fu, W. Lu, L. Chen, ACS Appl. Mater. Interfaces 5 (2013) 284. https://doi.org/10.1021/am3020857
  21. X. Fu, T. Lou, Z. Chen, M. Lin, W. Feng, L. Chen, ACS Appl. Mater. Interfaces 4 (2012) 1080. https://doi.org/10.1021/am201711j
  22. R. Sedghi, S. Kazemi, B. Heidari, Sens. Actuators B Chem. 245 (2017) 860. https://doi.org/10.1016/j.snb.2017.01.203
  23. K. Hiratani, T. Takahashi, H. Sugihara, K. Kasuga, K. Fujiwara, T. Hayashita, R.A. Bartsch, Anal. Chem. 69 (1997) 3002. https://doi.org/10.1021/ac9701593
  24. K.Z. Hossain, T. Honjo, Fresenius J. Anal. Chem. 361 (1998) 451. https://doi.org/10.1007/s002160050924
  25. A.L.D. Comitre, B.F. Reis, Talanta 65 (2005) 846. https://doi.org/10.1016/j.talanta.2004.08.018
  26. A.A. Ensafi, T. Khayamian, M.H. Karbasi, Anal. Sci. 19 (2003) 953. https://doi.org/10.2116/analsci.19.953
  27. M. Shamsipur, F. Raoufi, H. Sharghi, Talanta 52 (2000) 637. https://doi.org/10.1016/S0039-9140(00)00390-8
  28. M.A. Taher, Croat. Chim. Acta 76 (2003) 273.
  29. J. Pan, Y. Chen, H. Yan, Chromogenic Reagents and Their Applications in Spectrophotometric Analysis, Shanghai Science and Technology Press, Shanghai, 1981 p. 283.
  30. L.C. Willemsons, Handbook of Lead Chemicals, Project LC-116, International Lead Zinc Research Organization, New York, 1986.
  31. R.M. Dagnall, T.S. West, P. Young, Talanta 12 (1965) 583. https://doi.org/10.1016/0039-9140(65)80071-6
  32. N. Trinder, Analyst 91 (1966) 587. https://doi.org/10.1039/an9669100587
  33. M. Xiao, Phys. Test. Chem. Anal. 24 (1988) 130.
  34. S.L.C. Ferreira, M.G.M. Andrade, I.P. Lobo, A.C.S. Costa, Anal. Lett. 24 (1991) 1675. https://doi.org/10.1080/00032719108053002
  35. G.V. Ralkaiah, M.C. Eshwar, Indian J. Technol. 23 (1985) 157.
  36. J. Pan, Z. Li, C.G. Hsu, Anal. Lab. 13 (1994) 29.
  37. G. Fang, Y. Liu, S. Meng, Y. Guo, Talanta 57 (2002) 1155. https://doi.org/10.1016/S0039-9140(02)00195-9
  38. Z. Li, J. Tang, J. Pan, Food Control 15 (2004) 565. https://doi.org/10.1016/j.foodcont.2003.09.002
  39. S. Daia, X. Zhang, L. Yub, Y. Yang, Spectrochim. Acta A 75 (2010) 330. https://doi.org/10.1016/j.saa.2009.10.035
  40. M.J. Ahmed, M. Al Mamun, Talanta 55 (2001) 43. https://doi.org/10.1016/S0039-9140(01)00389-7
  41. K. Deepa, Y.P. Raj, Y. Lingappa, Pharm. Lett. 6 (2014) 380.
  42. L.V. Tan, N.T.N. Le, Int. J. Chem. 2 (2010) 86.
  43. I.M.M. Rahman, Y.F. Zinnat, A. Begum, R. Sato, H. Okumura, H. Honda, H. Hasegawa, Cent. Eur. J. Chem. 11 (2013) 672.
  44. J. Klamtet, N. Suphrom, C. Wanwat, Maejo Int. J. Sci. Technol. 2 (2008) 408.
  45. M. Behbahani, P.G. Hassanlou, M.M. Amini, H.R. Moazami, H.S. Abandansari, A. Bagheri, S.H. Zadeh, Food Anal. Methods 8 (2015) 558. https://doi.org/10.1007/s12161-014-9924-5
  46. F. Jing, Z. GuiFen, W. HaiBo, W. JianJi, Sci. China Chem. 54 (2011) 998.
  47. S.R. Segade, J.F. Tyson, Talanta 71 (2007) 1696. https://doi.org/10.1016/j.talanta.2006.08.006
  48. S. Cerutti, M.F. Silva, J.A. Gasquez, R.A. Olsina, L.D. Martinez, Spectrochim. Acta B 58 (2003) 43. https://doi.org/10.1016/S0584-8547(02)00215-X
  49. M. Ghaedi, M.R. Fathi, F. Marahel, F. Ahmadi, Fresenius Environ. Bull. 14 (2005) 1158.
  50. K. Suvardhan, K.S. Kumar, D. Rekha, B. Jayaraj, G.K. Naidu, P. Chiranjeevi, Talanta 68 (2006) 735. https://doi.org/10.1016/j.talanta.2005.05.020
  51. A. Uzun, M. Soylak, L. Elci, Talanta 54 (2001) 197. https://doi.org/10.1016/S0039-9140(00)00669-X
  52. P.K. Tewari, A.K. Singh, Talanta 56 (2002) 735. https://doi.org/10.1016/S0039-9140(01)00606-3
  53. C. Duran, H.B. Senturk, A. Gundogdu, V.N. Bulut, L. Elci, M. Soylak, M. Tufekci, Y. Uygur, Chin. J. Chem. 25 (2007) 196. https://doi.org/10.1002/cjoc.200790040
  54. C. Duran, M. Soylak, V.N. Bulut, A. Gundogdu, M. Tufekci, L. Elci, H.B. Senturk, J. Chin. Chem. Soc. 54 (2007) 625. https://doi.org/10.1002/jccs.200700090
  55. A.S. Amin, T.Y. Mohammed, A.A. Mousa, Spectrochim. Acta A 59 (2003) 2577. https://doi.org/10.1016/S1386-1425(03)00040-4
  56. A.S. Amin, I.S. Ahmed, Anal. Lett. 43 (2010) 2598. https://doi.org/10.1080/00032711003726910
  57. L. Elci, M. Soylak, M. Dogan, Fresenius J. Anal. Chem. 342 (1992) 175. https://doi.org/10.1007/BF00321717
  58. H.T.S. Britton, Hydrogen Ions, 4th ed., Chapman and Hall, London,1952 p.1168.
  59. G. Venkatesh, A.K. Singh, B. Venkataramani, Microchim. Acta 144 (2004) 233. https://doi.org/10.1007/s00604-003-0132-z
  60. M.L. Jacson, Soil Chemical Analysis, Prentice Hall, Englewood Cliffs, NJ, 1965 p. 326.
  61. IUPAC, Spectrochim. Acta B 33 (1978) 241. https://doi.org/10.1016/0584-8547(78)80044-5
  62. G. Venkatesh, A.K. Singh, Talanta 71 (2007) 282. https://doi.org/10.1016/j.talanta.2006.03.059
  63. G. Venkatesh, A.K. Jain, A.K. Singh, Microchim. Acta 149 (2005) 213. https://doi.org/10.1007/s00604-005-0320-0
  64. G.L. Long, J.D. Wineforder, Anal. Chem. 52 (1980) 2242. https://doi.org/10.1021/ac50064a004
  65. E. Matoso, L.T. Kubota, S. Cadore, Talanta 60 (2003) 1105. https://doi.org/10.1016/S0039-9140(03)00215-7
  66. A. Zougagh, A.G. Torres, E.V. Alonso, J.M.C. Pavon, Talanta 62 (2004) 503. https://doi.org/10.1016/j.talanta.2003.08.033
  67. M.R. Bin Abas, I.A. Takruni, Z. Abdullah, N.M. Tahir, Talanta 58 (2002) 883. https://doi.org/10.1016/S0039-9140(02)00396-X
  68. S. Saracoglu, L. Elci, Anal. Chim. Acta 452 (2002) 77. https://doi.org/10.1016/S0003-2670(01)01425-8
  69. M. Ghaedi, F. Ahmadi, A. Shokrollahi, J. Hazard. Mater. 142 (2007) 272. https://doi.org/10.1016/j.jhazmat.2006.08.012
  70. S. Tokalioglu, S. Kartal, Bull. Korean Chem. Soc. 27 (2006) 1293. https://doi.org/10.5012/bkcs.2006.27.9.1293
  71. L. Elci, A.A. Kartal, M. Soylak, J. Hazard. Mater. 153 (2008) 454. https://doi.org/10.1016/j.jhazmat.2007.08.075
  72. M. Ghaedi, M. Montazerozohori, M. Soylak, J. Hazard. Mater. 142 (2007) 368. https://doi.org/10.1016/j.jhazmat.2006.08.033
  73. N. Tokman, S. Akman, M. Ozcan, Talanta 59 (2003) 201. https://doi.org/10.1016/S0039-9140(02)00479-4
  74. E.A. Greenberg, S.L. Clesceri, D.A. Eaton, Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Association, Washington, DC, 1992 p. 3.
  75. J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th ed., Prentice Hall, England, 2005.

Cited by

  1. Determination of Copper in Quince Samples with a Matrix Matching Strategy Using Vortex Assisted Deep Eutectic Solvent-Based Emulsification Liquid Phase Microextraction - Slotted Quartz Tube - Flame At vol.53, pp.17, 2020, https://doi.org/10.1080/00032719.2020.1757689