Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- G.A. Moldoveanu, V.G. Papangelakis, Hydrometallurgy 117-118 (2012) 71. https://doi.org/10.1016/j.hydromet.2012.02.007
- M. Tian, N. Song, D. Wang, X. Quan, Q. Jia, W. Liao, L. Lin, Hydrometallurgy 111-112 (2012) 109. https://doi.org/10.1016/j.hydromet.2011.11.002
- T. Kakoi, T. Nishiyori, T. Oshima, F. Kubota, M. Goto, S. Shinkai, F. Nakashio, J. Membr. Sci. 136 (1997) 261. https://doi.org/10.1016/S0376-7388(97)00173-7
- A. Sengupta, P.K. Mohapatra, A.B. Patil, R.M. Kadam, W. Verboom, Sep. Purif. Technol. 162 (2016) 77. https://doi.org/10.1016/j.seppur.2016.02.017
- F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, Miner. Eng. 56 (2014) 10. https://doi.org/10.1016/j.mineng.2013.10.021
- S. Yang, P. Zong, X. Ren, Q. Wang, X. Wang, ACS Appl. Mater. Interfaces 4 (2012) 6891. https://doi.org/10.1021/am3020372
- H. Vojoudi, A. Badiei, A. Amiri, A. Banaei, G.M. Ziarani, K. Schenk-JoB, Food Chem. 257 (2018) 189. https://doi.org/10.1016/j.foodchem.2018.02.126
- H. Vojoudi, A. Badiei, S. Bahar, G. Mohammadi Ziarani, F. Faridbod, M.R. Ganjali, Powder Technol. 319 (2017) 271. https://doi.org/10.1016/j.powtec.2017.06.028
- F. Wang, J. Zhao, F. Pan, H. Zhou, X. Yang, W. Li, H. Liu, Ind. Eng. Chem. Res. 52 (2013) 3453. https://doi.org/10.1021/ie302753q
- F. Zhao, E. Repo, Y. Meng, X. Wang, D. Yin, M. Sillanpaa, J. Colloid Interface Sci. 465 (2016) 215. https://doi.org/10.1016/j.jcis.2015.11.069
- X. Yang, J. Zhang, X. Fang, J. Hazard. Mater. 279 (2014) 384. https://doi.org/10.1016/j.jhazmat.2014.07.027
- I. Anastopoulos, A. Bhatnagar, E.C. Lima, J. Mol. Liq. 221 (2016) 954. https://doi.org/10.1016/j.molliq.2016.06.076
- W. Yantasee, G.E. Fryxell, R.S. Addleman, R.J. Wiacek, V. Koonsiripaiboon, K. Pattamakomsan, V. Sukwarotwat, J. Xu, K.N. Raymond, J. Hazard. Mater. 168 (2009) 1233. https://doi.org/10.1016/j.jhazmat.2009.03.004
- M.R. Awual, T. Kobayashi, H. Shiwaku, Y. Miyazaki, R. Motokawa, S. Suzuki, Y. Okamoto, T. Yaita, Chem. Eng. J. 225 (2013) 558. https://doi.org/10.1016/j.cej.2013.04.015
- S. Schneider, A. Caldas Garcez, M. Tremblay, F. Bilodeau, D. Lariviere, F. Kleitz, New J. Chem. 37 (2013) 3877. https://doi.org/10.1039/c3nj01236k
- Y. Zhao, J. Li, S. Zhang, X. Wang, RSC Adv. 4 (2014) 32710. https://doi.org/10.1039/C4RA05128A
- X. Zhao, M. Wong, C. Mao, T.X. Trieu, J. Zhang, P. Feng, X. Bu, J. Am. Chem. Soc. 136 (2014) 12572. https://doi.org/10.1021/ja5067306
- B.-C. Luo, L.-Y. Yuan, Z.-F. Chai, W.-Q. Shi, Q. Tang, J. Radioanal. Nucl. Chem. 307 (2016) 269. https://doi.org/10.1007/s10967-015-4108-3
- M.-R. Huang, H.-J. Lu, X.-G. Li, J. Mater. Chem. 22 (2012) 17685. https://doi.org/10.1039/c2jm32361c
- C. Han, L. Zhang, H. Li, Chem. Commun. (2009) 3545.
- A.R. Elsalamouny, O.A. Desouky, S.A. Mohamed, A.A. Galhoum, E. Guibal, Int. J. Biol. Macromol. 104 (2017) 963. https://doi.org/10.1016/j.ijbiomac.2017.06.081
- A.A. Galhoum, M.G. Mahfouz, S.T. Abdel-Rehem, N.A. Gomaa, A.A. Atia, T. Vincent, E. Guibal, Cellulose 22 (2015) 2589. https://doi.org/10.1007/s10570-015-0677-0
- S. Li, Y. Chen, X. Pei, S. Zhang, X. Feng, J. Zhou, B. Wang, Chin. J. Chem. 34 (2016) 175. https://doi.org/10.1002/cjoc.201500761
- J. Roosen, J. Spooren, K. Binnemans, J. Mater. Chem. A 2 (2014) 19415. https://doi.org/10.1039/C4TA04518A
- S. Ravi, Y.-R. Lee, K. Yu, J.-W. Ahn, W.-S. Ahn, Microporous Mesoporous Mater. 258 (2018) 62. https://doi.org/10.1016/j.micromeso.2017.09.006
- A.A. Naser, G.E.S. El-deen, A.A. Bhran, S.S. Metwally, A.M. El-Kamash, J. Ind. Eng. Chem. 32 (2015) 264. https://doi.org/10.1016/j.jiec.2015.08.024
- I.V. Melnyk, V.P. Goncharyk, L.I. Kozhara, G.R. Yurchenko, A.K. Matkovsky, Y.L. Zub, B. Alonso, Microporous Mesoporous Mater. 153 (2012) 171. https://doi.org/10.1016/j.micromeso.2011.12.027
- T. Ogata, H. Narita, M. Tanaka, Hydrometallurgy 152 (2015) 178. https://doi.org/10.1016/j.hydromet.2015.01.005
- E. Polido Legaria, S.D. Topel, V.G. Kessler, G.A. Seisenbaeva, Dalton Trans. 44 (2015) 1273. https://doi.org/10.1039/C4DT03096F
- W. Peng, H. Li, Y. Liu, S. Song, J. Mol. Liq. 230 (2017) 496. https://doi.org/10.1016/j.molliq.2017.01.064
- F. Kleitz, S. Hei Choi, R. Ryoo, Chem. Commun. (2003) 2136.
- F. Kleitz, F. Berube, R. Guillet-Nicolas, C.-M. Yang, M. Thommes, J. Phys. Chem. C 114 (2010) 9344. https://doi.org/10.1021/jp909836v
- A. Fihri, M. Bouhrara, U. Patil, D. Cha, Y. Saih, V. Polshettiwar, ACS Catal. 2 (2012) 1425. https://doi.org/10.1021/cs300179q
- M. Bouhrara, C. Ranga, A. Fihri, R.R. Shaikh, P. Sarawade, A.-H. Emwas, M.N. Hedhili, V. Polshettiwar, ACS Sustain. Chem. Eng. 1 (2013) 1192. https://doi.org/10.1021/sc400126h
- V. Polshettiwar, D. Cha, X. Zhang, J.M. Basset, Angew. Chem. Int. Ed. 49 (2010) 9652. https://doi.org/10.1002/anie.201003451
- L. Sarkisov, P.A. Monson, Langmuir 17 (2001) 7600. https://doi.org/10.1021/la015521u
- J. Tu, N. Li, W. Geng, R. Wang, X. Lai, Y. Cao, T. Zhang, X. Li, S. Qiu, Sens. Actuators B: Chem. 166-167 (2012) 658. https://doi.org/10.1016/j.snb.2012.03.033
- S. Ravi, M. Selvaraj, H. Park, H.-H. Chun, C.-S. Ha, New J. Chem. 38 (2014) 3899. https://doi.org/10.1039/C4NJ00418C
- S. Ravi, Y.-R. Lee, K. Yu, J.-W. Ahn, W.-S. Ahn, Microporous Mesoporous Mater. 258 (2018) 62. https://doi.org/10.1016/j.micromeso.2017.09.006
- R. Kumar, M.A. Barakat, Y.A. Daza, H.L. Woodcock, J.N. Kuhn, J. Colloid Interface Sci. 408 (2013) 200. https://doi.org/10.1016/j.jcis.2013.07.019
- H. Vojoudi, A. Badiei, A. Amiri, A. Banaei, G.M. Ziarani, K. Schenk-JoB, J. Phys. Chem. Solids 113 (2018) 210. https://doi.org/10.1016/j.jpcs.2017.10.029
- J. Shalini, K.J. Sankaran, C.-L. Dong, C.-Y. Lee, N.-H. Tai, I.N. Lin, Nanoscale 5 (2013) 1159. https://doi.org/10.1039/c2nr32939e
- S. Ravi, P. Puthiaraj, K.H. Row, D.-W. Park, W.-S. Ahn, Ind. Eng. Chem. Res. 56 (2017) 10174. https://doi.org/10.1021/acs.iecr.7b02743
- Z. Chen, S. Pronkin, T.-P. Fellinger, K. Kailasam, G. Vile, D. Albani, F. Krumeich, R. Leary, J. Barnard, J.M. Thomas, J. Perez-Ramirez, M. Antonietti, D. Dontsova, ACS Nano 10 (2016) 3166. https://doi.org/10.1021/acsnano.5b04210
-
S. Ravi, P. Puthiaraj, W.-S. Ahn, J.
$CO_2$ Util. 21 (2017) 450. - I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361. https://doi.org/10.1021/ja02242a004
- S. Aytas, M. Yurtlu, R. Donat, J. Hazard. Mater. 172 (2009) 667. https://doi.org/10.1016/j.jhazmat.2009.07.049
- Q. Lu, Y. Ma, H. Li, X. Guan, Y. Yusran, M. Xue, Q. Fang, Y. Yan, S. Qiu, V. Valtchev, Angew. Chem. Int. Ed. 57 (2018) 6042. https://doi.org/10.1002/anie.201712246
- F.-C. Wu, R.-L. Tseng, S.-C. Huang, R.-S. Juang, Chem. Eng. J. 151 (2009) 1. https://doi.org/10.1016/j.cej.2009.02.024
- Y.S. Ho, G. McKay, J. Environ. Sci. Health A 34 (1999) 1179. https://doi.org/10.1080/10934529909376889
- M. Sillanpaa, R. Kokkonen, M.-L. Sihvonen, Anal. Chim. Acta 303 (1995) 187. https://doi.org/10.1016/0003-2670(94)00535-T
- R. Kumar, M.A. Barakat, Y.A. Daza, H.L. Woodcock, J.N. Kuhn, J. Colloid Interface Sci. 408 (2013) 200. https://doi.org/10.1016/j.jcis.2013.07.019
- S. Gai, C. Li, P. Yang, J. Lin, Chem. Rev. 114 (2014) 2343. https://doi.org/10.1021/cr4001594
Cited by
- Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials vol.7, pp.10, 2018, https://doi.org/10.1039/c8ta09815h
- Porous Covalent Organic Polymers Comprising a Phosphite Skeleton for Aqueous Nd(III) Capture vol.11, pp.12, 2018, https://doi.org/10.1021/acsami.9b00546
- Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach vol.9, pp.43, 2018, https://doi.org/10.1039/c9ra04845f
- EDTA-Functionalized Covalent Organic Framework for the Removal of Heavy-Metal Ions vol.11, pp.35, 2018, https://doi.org/10.1021/acsami.9b11850
- Removal of Mercury (II) by EDTA-Functionalized Magnetic CoFe2O4@SiO2 Nanomaterial with Core-Shell Structure vol.9, pp.11, 2018, https://doi.org/10.3390/nano9111532
- Comparison of Cadmium Cd2+ and Lead Pb2+ Binding by Fe2O3@SiO2‐EDTA Nanoparticles – Binding Stability and Kinetic Studies vol.32, pp.3, 2018, https://doi.org/10.1002/elan.201900616
- Development of a mesoporous silica based solid‐phase extraction and ultra‐performance liquid chromatography–MS/MS method for quantifying lignans in Justicia procumbens vol.41, pp.5, 2020, https://doi.org/10.1002/elps.201900401
- Photochemical Functionalization of Graphene Oxide by Thiol-Ene Click Chemistry vol.59, pp.29, 2018, https://doi.org/10.1021/acs.iecr.0c01252
- Adhesive Sponge Based on Supramolecular Dimer Interactions as Scaffolds for Neural Stem Cells vol.21, pp.8, 2018, https://doi.org/10.1021/acs.biomac.0c00825
- Role of the Metal Surface on the Room Temperature Activation of the Alcohol and Amino Groups of p-Aminophenol vol.124, pp.36, 2020, https://doi.org/10.1021/acs.jpcc.0c06101
- Simultaneous extraction of permethrin diastereomers and deltamethrin in environmental water samples based on aperture regulated magnetic mesoporous silica vol.44, pp.37, 2020, https://doi.org/10.1039/d0nj01634a
- CO2 Hydrogenation to Formate by Palladium Nanoparticles Supported on N-Incorporated Periodic Mesoporous Organosilica vol.8, pp.39, 2018, https://doi.org/10.1021/acssuschemeng.0c03860
- Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications vol.93, pp.12, 2018, https://doi.org/10.1246/bcsj.20200136
- Synthesis of well-defined molecularly imprinted bulk polymers for the removal of azo dyes from water resources vol.4, pp.None, 2018, https://doi.org/10.1016/j.crgsc.2021.100196
- Aluminum-Based Surface Polymerization on Carbon Dots with Aggregation-Enhanced Luminescence vol.12, pp.None, 2018, https://doi.org/10.1021/acs.jpclett.1c01240
- Three-Dimensional Graphene Oxide Covalently Functionalized with Dawson-Type Polyoxotungstates for Oxidative Desulfurization of Model Fuels vol.60, pp.1, 2021, https://doi.org/10.1021/acs.iecr.0c04384
- Nd(III) and Gd(III) Sorption on Mesoporous Amine-Functionalized Polymer/SiO2 Composite vol.26, pp.4, 2018, https://doi.org/10.3390/molecules26041049
- Model Studies on the Formation of the Solid Electrolyte Interphase: Reaction of Li with Ultrathin Adsorbed Ionic‐Liquid Films and Co3O4(111) Thin Films vol.22, pp.5, 2021, https://doi.org/10.1002/cphc.202001033
- Aqueous Nd3+ capture using a carboxyl-functionalized porous carbon derived from ZIF-8 vol.594, pp.None, 2018, https://doi.org/10.1016/j.jcis.2021.03.036
- Removal of copper ions by functionalized biochar based on a multicomponent Ugi reaction vol.11, pp.42, 2018, https://doi.org/10.1039/d1ra04156h
- Influence of deposited amine‐functionalized Si‐MCM‐41 in polyacrylonitrile electrospun membranes applied for separation of water in oil emulsions vol.138, pp.30, 2021, https://doi.org/10.1002/app.50737
- Wet or dry multifunctional coating prepared by visible light polymerisation with fire retardant, thermal protective, and antimicrobial properties vol.28, pp.13, 2021, https://doi.org/10.1007/s10570-021-04095-z
- Methane dry reforming over Ni/fibrous SBA-15 catalysts: Effects of support morphology (rod-liked F-SBA-15 and dendritic DFSBA-15) vol.375, pp.None, 2021, https://doi.org/10.1016/j.cattod.2020.06.073
- Suppressing Defect Formation in Metal-Organic Framework Membranes via Plasma-Assisted Synthesis for Gas Separations vol.13, pp.35, 2018, https://doi.org/10.1021/acsami.1c13134
- Poly(amidoamine) dendrimer decorated dendritic fibrous nano-silica for efficient removal of uranium (VI) vol.303, pp.None, 2021, https://doi.org/10.1016/j.jssc.2021.122511
- Novel phosphonate-functionalized composite sorbent for the recovery of lanthanum(III) and terbium(III) from synthetic solutions and ore leachate vol.424, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.130500
- Removal of heavy metals by surface tailored copper ion enhanced ceramic-supported-polymeric composite nanofiltration membrane vol.9, pp.6, 2018, https://doi.org/10.1016/j.jece.2021.106368
- A hybrid Zr/amine-modified mesoporous silica for adsorption and preconcentration of as before its FI HG AAS determination in water vol.328, pp.None, 2021, https://doi.org/10.1016/j.micromeso.2021.111484
- Supported copper on a diamide-diacid-bridged PMO: an efficient hybrid catalyst for the cascade oxidation of benzyl alcohols/Knoevenagel condensation vol.12, pp.1, 2022, https://doi.org/10.1039/d1ra06509b
- Recent advances in selective separation technologies of rare earth elements: a review vol.10, pp.1, 2022, https://doi.org/10.1016/j.jece.2021.107104
- Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage vol.424, pp.no.pc, 2018, https://doi.org/10.1016/j.jhazmat.2021.127625
- A template synthesized strategy on bentonite-doped lignin hydrogel spheres for organic dyes removal vol.285, pp.None, 2018, https://doi.org/10.1016/j.seppur.2021.120376