DOI QR코드

DOI QR Code

Low cost zwitterionic adsorbent coating for treatment of anionic and cationic dyes

  • Received : 2018.02.14
  • Accepted : 2018.06.25
  • Published : 2018.11.25

Abstract

Clay based coating with zwitterionic functionality is used to remove cationic and anionic dyes. Adsorbent coating was prepared by the mixing of bentonite clay, acrylic polymer (AP) and polyethylene-diamine (EPI-DMA). Characterization was performed using SEM-EDX, XRF, X-ray mapping and FTIR analyses. The adsorption capacity of ZACC was found to be increased from 59.35 to 255.99 mg/g and from 45.84 to 70.09 mg/g for BG and AR1 dyes, respectively using initial concentration (50-200 ppm). Significant adsorption capacity along with mechanical and chemical stability formulates ZACC as an excellent composite coating for treatment of anionic and cationic dyes from industrial wastewater.

Keywords

References

  1. Z. Zhua, P. Wu, G. Liu, X. He, B. Qi, G. Zeng, W. Wang, Y. Sunb, F. Cuia, Chem. Eng. J. 313 (2017) 957. https://doi.org/10.1016/j.cej.2016.10.145
  2. M. Vakili, M. Rafatullah, M.H. Ibrahim, A.Z. Abdullah, B. Salamatinia, Z. Gholami, Carbohydr. Polym. 137 (2016) 139. https://doi.org/10.1016/j.carbpol.2015.09.017
  3. M. Vakili, M. Rafatullah, B. Salamatinia, M.H. Ibrahim, A.Z. Abdullah, Carbohydr. Polym. 132 (2015) 89. https://doi.org/10.1016/j.carbpol.2015.05.080
  4. B. Song, et al., Chemosphere 172 (2017) 449. https://doi.org/10.1016/j.chemosphere.2017.01.032
  5. B. Song, et al., Water Res. 129 (2018) 20. https://doi.org/10.1016/j.watres.2017.11.003
  6. A.H. Jawad, M. Azharul Islam, B.H. Hameed, Int. J. Biol. Macromol. 95 (2017) 743. https://doi.org/10.1016/j.ijbiomac.2016.11.087
  7. S.F. Azha, A.L. Ahmad, S. Ismail, J. Water Process Eng. 15 (2017) 18. https://doi.org/10.1016/j.jwpe.2016.05.008
  8. T. Kamal, S. Khan, A. Asiri, Environ. Pollut. 218 (2016) 625. https://doi.org/10.1016/j.envpol.2016.07.046
  9. S.F. Azha, M. Shahadat, S. Ismail, Dyes Pigm. 145 (2017) 550. https://doi.org/10.1016/j.dyepig.2017.05.009
  10. S.A. Hamid, M. Shahadat, S. Ismail, Appl. Clay Sci. 149 (2017) 79. https://doi.org/10.1016/j.clay.2017.07.022
  11. A. Freni, A. Frazzica, B. Dawoud, S. Chmielewski, L. Calabrese, L. Bonaccorsi, Appl. Therm. Eng. 50 (2) (2013) 1658. https://doi.org/10.1016/j.applthermaleng.2011.07.010
  12. G.L. Dotto, et al., J. Environ. Chem. Eng. 4 (3) (2016) 3230. https://doi.org/10.1016/j.jece.2016.07.004
  13. W. Zhang, et al., Carbohydr. Polym. 90 (2) (2012) 887. https://doi.org/10.1016/j.carbpol.2012.06.015
  14. T. Kamal, M. Ul-Islam, S.B. Khan, A.M. Asiri, Int. J. Biol. Macromol. 81 (2015) 584. https://doi.org/10.1016/j.ijbiomac.2015.08.060
  15. C. Liu, P. Wu, Y. Zhu, L. Tran, Chemosphere 144 (2016) 1026. https://doi.org/10.1016/j.chemosphere.2015.09.063
  16. K. Liu, L. Chen, L. Huang, Y. Lai, Carbohydr. Polym. 151 (2016) 1115. https://doi.org/10.1016/j.carbpol.2016.06.071
  17. L. Espinal, Charact. Mater. (2012) 1.
  18. Q. Li, Q. Yue, Y. Su, B. Gao, L. Fu, J. Hazard. Mater.147 (August (1-2)) (2007) 370. https://doi.org/10.1016/j.jhazmat.2007.01.024
  19. Q. Kang, W. Zhou, Q. Li, B. Gao, J. Fan, D. Shen, Appl. Clay Sci. 45 (4) (2009) 280. https://doi.org/10.1016/j.clay.2009.06.010
  20. Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, H.J. Sun, Chem. Eng. J. 158 (3) (2010) 489. https://doi.org/10.1016/j.cej.2010.01.033
  21. R. Nosrati, A. Olad, K. Nofouzi, Appl. Surf. Sci. 346 (2015) 543. https://doi.org/10.1016/j.apsusc.2015.04.056
  22. Q. Li, Q.-Y. Yue, H.-J. Sun, Y. Su, B.-Y. Gao, J. Environ. Manage. 91 (July (7)) (2010) 1601. https://doi.org/10.1016/j.jenvman.2010.03.001
  23. V. Sharma, P. Rekha, P. Mohanty, J. Mol. Liq. 222 (2016) 1091. https://doi.org/10.1016/j.molliq.2016.07.130
  24. J. Zhou, Q.-F. Lü, J.-J. Luo, J. Clean. Prod. 167 (2017) 739. https://doi.org/10.1016/j.jclepro.2017.08.196
  25. M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Desalination 280 (1-3) (2011) 1. https://doi.org/10.1016/j.desal.2011.07.019
  26. D.H.K. Reddy, S.M. Lee, Adv. Colloid Interface Sci. 201-202 (2013) 68. https://doi.org/10.1016/j.cis.2013.10.002
  27. D.P. Dutta, R. Venugopalan, S. Chopade, ChemistrySelect 2 (13) (2017) 3878. https://doi.org/10.1002/slct.201700135
  28. T. Ngulube, J. Ray, V. Masindi, A. Maity, J. Environ. Manage. 191 (2017) 35. https://doi.org/10.1016/j.jenvman.2016.12.031
  29. S. Yu, et al., Chem. Eng. J. 333 (2018) 343. https://doi.org/10.1016/j.cej.2017.09.163
  30. S. Yu, et al., J. Hazard. Mater. 321 (2017) 111. https://doi.org/10.1016/j.jhazmat.2016.09.009
  31. W. Song, et al., Environ. Sci. Nano 3 (6) (2016).
  32. X. Li, et al., Chem. Eng. J. 336 (2018) 241. https://doi.org/10.1016/j.cej.2017.11.188
  33. Y. Zou, et al., J. Mater. Chem. A 4 (37) (2016) 14170. https://doi.org/10.1039/C6TA05958A
  34. S. Yu, et al., J. Mater. Chem. A 4 (15) (2016) 5654. https://doi.org/10.1039/C6TA00890A
  35. S. Yu, et al., Environ. Sci. Technol. 51 (6) (2017) 3278. https://doi.org/10.1021/acs.est.6b06259
  36. Y. Wu, H. Qi, B. Li, H. Zhanhua, W. Li, S. Liu, Carbohydr. Polym. 155 (2017) 294. https://doi.org/10.1016/j.carbpol.2016.08.088
  37. O.S. Esan, O.N. Abiola, O. Owoyomi, C.O. Aboluwoye, M.O. Osundiya, ISRN Phys. Chem. 2014 (2014).
  38. B.K. Nandi, A. Goswami, M.K. Purkait, J. Hazard. Mater. 161 (1) (2009) 387. https://doi.org/10.1016/j.jhazmat.2008.03.110
  39. H.I. Chieng, N. Priyantha, L.B.L. Lim, RSC Adv. 5 (44) (2015) 34603. https://doi.org/10.1039/C5RA01572C
  40. I. Laaz, M.J. Stebe, A. Benhamou, D. Zoubir, J.L. Blin, Colloids Surf. A: Physicochem. Eng. Asp. 490 (2016) 30. https://doi.org/10.1016/j.colsurfa.2015.11.024
  41. V.S. Mane, P.V.V. Babu, Desalination 273 (June (2-3)) (2011) 321. https://doi.org/10.1016/j.desal.2011.01.049
  42. Z. Huang, et al., Mater. Chem. Phys. 202 (2017) 266. https://doi.org/10.1016/j.matchemphys.2017.09.028
  43. C.-C. Wang, L.-C. Juang, C.-K. Lee, T.-C. Hsu, J.-F. Lee, H.-P. Chao, J. Colloid Interface Sci. 280 (December (1)) (2004) 27. https://doi.org/10.1016/j.jcis.2004.07.009
  44. D.S. Tong, C.H. (Clayton) Zhou, Y. Lu, H. Yu, G.F. Zhang, W.H. Yu, Appl. Clay Sci. 50 (November (3)) (2010) 427. https://doi.org/10.1016/j.clay.2010.08.018
  45. S.T. Akar, E. San, T. Akar, Carbohydr. Polym. 143 (June) (2016) 318. https://doi.org/10.1016/j.carbpol.2016.01.066

Cited by

  1. Comparison of the Removal of an Anionic Dye from Aqueous Solutions by Adsorption with Organically Modified Clays and their Composites vol.230, pp.4, 2018, https://doi.org/10.1007/s11270-019-4131-z
  2. A Comparative Study on Color Stability of Anthocyanin Hybrid Pigments Derived from 1D and 2D Clay Minerals vol.12, pp.20, 2019, https://doi.org/10.3390/ma12203287
  3. Stability and durability studies of zwitterionic adsorbent coating for the removal of organic pollutants: Chemical and thermal tolerance vol.796, pp.None, 2020, https://doi.org/10.1088/1757-899x/796/1/012054
  4. Prospect of clay-based flexible adsorbent coatings as cleaner production technique in wastewater treatment, challenges, and issues: A review vol.120, pp.None, 2021, https://doi.org/10.1016/j.jtice.2021.03.018
  5. Clay-Polymer Nanocomposites: Preparations and Utilization for Pollutants Removal vol.14, pp.6, 2018, https://doi.org/10.3390/ma14061365
  6. Effective Adsorption of Methyl Orange on Organo-Silica Nanoparticles Functionalized by a Multi-Hydroxyl-Containing Gemini Surfactant: A Joint Experimental and Theoretical Study vol.6, pp.28, 2021, https://doi.org/10.1021/acsomega.1c01788
  7. Zwitterion-decorated graphene oxide nanosheets with aliphatic amino acids under specific pH conditions vol.555, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2021.149723
  8. One-step fabrication of a new outstanding rutile TiO2 nanoparticles/anthracite adsorbent: Modeling and physicochemical interpretations for malachite green removal vol.426, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.131890