DOI QR코드

DOI QR Code

Effects of a naturally derived surfactant on hydrate anti-agglomeration using micromechanical force measurement

  • Li, Mingzhong (College of Petroleum Engineering, China University of Petroleum (East China)) ;
  • Dong, Sanbao (College of Petroleum Engineering, China University of Petroleum (East China)) ;
  • Li, Bofeng (College of Petroleum Engineering, China University of Petroleum (East China)) ;
  • Liu, Chenwei (College of Petroleum Engineering, China University of Petroleum (East China))
  • Received : 2018.05.02
  • Accepted : 2018.06.24
  • Published : 2018.11.25

Abstract

The performance of a hydrate anti-agglomerant (AA) on cyclopentane (CyC5) hydrate anti-agglomeration at various concentrations (0-1 wt%, based on the oil phase) using MMF apparatus has been investigated. At low AA concentrations up to 0.01 wt%, the AA reduces the cohesion force (capillary force) by reducing the CyC5-water interfacial tension. At concentrations higher than 0.1 wt%, hydrate hydrophobicity alternation and AA's thermodynamic inhibition effects are the main part of AA's mechanism. Additionally, a "temporary agglomeration" phenomenon caused by surface melting of the hydrate particles is also observed, which may indicate the AA's weak ability to produce stable water-CyC5 interface.

Keywords

Acknowledgement

Supported by : Central Universities, National Natural Science Foundation, Natural Science Foundation of Shandong Province

References

  1. M.A. Kelland, Energy Fuels 20 (2006) 825. https://doi.org/10.1021/ef050427x
  2. M. Sun, A. Firoozabadi, Fuel 146 (2015) 1. https://doi.org/10.1016/j.fuel.2014.12.078
  3. Z.M. Aman, E.P. Brown, E.D. Sloan, A.K. Sum, C.A. Koh, Phys. Chem. Chem. Phys. 13 (2011) 19796. https://doi.org/10.1039/c1cp21907c
  4. M.A. Kelland, Production Chemicals for Oil and Gas Industry, CRC Press, Taylor & Francis, Boca Raton, FL, 2014.
  5. E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, CRC Press, Taylor & Francis, Boca Raton, FL, 2008.
  6. A. Perrin, O.M. Musa, J.W. Steed, Chem. Soc. Rev. 42 (2013) 1996. https://doi.org/10.1039/c2cs35340g
  7. N. Abojaladi, M.A. Kelland, Chem. Eng. Sci. 152 (2016) 746. https://doi.org/10.1016/j.ces.2016.06.067
  8. S. Gao, Energy Fuels 23 (2009) 2118. https://doi.org/10.1021/ef8009876
  9. J.D. York, A. Firoozabadi, Energy Fuels 23 (2009) 2937. https://doi.org/10.1021/ef800937p
  10. M. Sun, A. Firoozabadi, Energy Fuels 28 (2014) 1890. https://doi.org/10.1021/ef402517c
  11. M. Sun, A. Firoozabadi, G.J. Chen, C.Y. Sun, Energy Fuels 29 (2015) 2901. https://doi.org/10.1021/ef502077d
  12. M. Sun, Y. Wang, A. Firoozabadi, Energy Fuels 26 (2012) 5626. https://doi.org/10.1021/ef300922h
  13. P.C. Chua, M.A. Kelland, Energy Fuels 26 (2012) 1160. https://doi.org/10.1021/ef201849t
  14. P.C. Chua, M.A. Kelland, Energy Fuels 27 (2013) 1285. https://doi.org/10.1021/ef3018546
  15. A.K. Norland, M.A. Kelland, Chem. Eng. Sci. 69 (2012) 483. https://doi.org/10.1016/j.ces.2011.11.003
  16. M.F. Mady, M.A. Kelland, Chem. Eng. Sci. 144 (2016) 275. https://doi.org/10.1016/j.ces.2016.01.057
  17. C. Liu, M. Li, G. Zhang, C.A. Koh, Phys. Chem. Chem. Phys. 17 (2015) 20021. https://doi.org/10.1039/C5CP02247A
  18. E.P. Brown, C.A. Koh, Phys. Chem. Chem. Phys. 18 (2016) 594. https://doi.org/10.1039/C5CP06071K
  19. J.D. Smith, A.J. Meuler, H.L. Bralower, R. Venkatesan, S. Subramanian, A.A. Majid, E.D. Sloan, C.A. Koh, A.K. Sum, Energy Fuels 27 (2013) 4546.
  20. P.U. Karanjkar, J.W. Lee, J.F. Morris, Cryst. Growth Des. 12 (2012) 3817. https://doi.org/10.1021/cg300255g
  21. M. Sun, A. Firoozabadi, J. Colloid Interface Sci. 402 (2013) 312. https://doi.org/10.1016/j.jcis.2013.02.053
  22. J. Emsley, Chem. Soc. Rev. 9 (1980) 91. https://doi.org/10.1039/cs9800900091
  23. H. Zhao, M. Sun, A. Firoozabadi, Fuel 180 (2016) 187. https://doi.org/10.1016/j.fuel.2016.03.029
  24. S. Dong, M. Li, A. Firoozabadi, Fuel 210 (2017) 713. https://doi.org/10.1016/j.fuel.2017.08.096
  25. S. Dong, A. Firoozabadi, J. Chem. Thermodyn. 117 (2018) 214. https://doi.org/10.1016/j.jct.2017.09.016
  26. Y.N. Lv, M.L. Jia, J. Chen, C.Y. Sun, J. Gong, G.J. Chen, B. Liu, N. Ren, S.D. Guo, Q.P. Li, Energy Fuels 29 (2015) 5563. https://doi.org/10.1021/acs.energyfuels.5b00837
  27. E.P. Brown, PhD Thesis, School of Mines, Colorado, 2016.
  28. Z.M. Aman, E.D. Sloan, A.K. Sum, C.A. Koh, Energy Fuels 26 (2012) 5102. https://doi.org/10.1021/ef300707u
  29. J.G. Delgado-Linares, A.A.A. Majid, E.D. Sloan, C.A. Koh, Energy Fuels 27 (2013) 4564. https://doi.org/10.1021/ef4004768
  30. L.E. Dieker, M.S. Thesis, School of Mines, Colorado, 2009.
  31. L.E. Dieker, Z.M. Aman, N.C. George, A.K. Sum, E.D. Sloan, C.A. Koh, Energy Fuels 23 (2009) 5966. https://doi.org/10.1021/ef9006615
  32. Z.M. Aman, L.E. Dieker, G. Aspenses, A.K. Sum, E.D. Sloan, C.A. Koh, Energy Fuels 24 (2010) 5441. https://doi.org/10.1021/ef100762r
  33. Z.M. Aman, S.E. Joshi, E.D. Sloan, A.K. Sum, C.A. Koh, J. Colloid Interface Sci. 376 (2012) 283. https://doi.org/10.1016/j.jcis.2012.03.019
  34. Z.M. Aman, K. Olcott, K. Pfeiffer, E.D. Sloan, A.K. Sum, C.A. Koh, Langmuir 29 (2013) 2676. https://doi.org/10.1021/la3048714
  35. R. Wu, Z.M. Aman, E.F. May, K.A. Kozielski, P.G. Hartley, N. Maeda, A.K. Sum, Energy Fuels 28 (2014) 3632. https://doi.org/10.1021/ef500265w
  36. C. Liu, M. Li, L. Chen, Y. Li, S. Zheng, G. Han, Energy Fuels 31 (2017) 4981. https://doi.org/10.1021/acs.energyfuels.7b00364
  37. L. Wang, D. Sharp, J. Masliyah, Z. Xu, Langmuir 29 (2013) 3594. https://doi.org/10.1021/la304490e
  38. S.K. Nagappayya, R.M. Lucente-Schultz, V.M. Nace, V.M. Ho, J. Chem. Eng. Data 60 (2015) 351. https://doi.org/10.1021/je500611d

Cited by

  1. Functionalized Nanoparticles for the Dispersion of Gas Hydrates in Slurry Flow vol.4, pp.8, 2019, https://doi.org/10.1021/acsomega.9b01806
  2. The Effect of the Hydrate Antiagglomerant on Hydrate Crystallization at the Oil-Water Interface vol.5, pp.7, 2018, https://doi.org/10.1021/acsomega.9b03395
  3. Inhibition Performance of Chitosan-graft-Polyacrylamide as an Environmentally Friendly and High-Cloud-Point Inhibitor of Nucleation and Growth of Methane Hydrate vol.20, pp.3, 2018, https://doi.org/10.1021/acs.cgd.9b01500
  4. Effects of the Solidification of Capillary Bridges on the Interaction Forces between Hydrate Particles vol.34, pp.4, 2018, https://doi.org/10.1021/acs.energyfuels.0c00463
  5. Dual-Function Synergists Based on Glucose and Sucrose for Gas Hydrate and Corrosion Inhibition vol.34, pp.11, 2018, https://doi.org/10.1021/acs.energyfuels.0c02436
  6. Structural Effects of Gas Hydrate Antiagglomerant Molecules on Interfacial Interparticle Force Interactions vol.37, pp.5, 2021, https://doi.org/10.1021/acs.langmuir.0c02503
  7. Preparation and performance of biomimetic superhydrophobic coating on X80 pipeline steel for inhibition of hydrate adhesion vol.419, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.129651