DOI QR코드

DOI QR Code

Morphological transformations during drying of surfactant-nanofluid droplets

  • Osman, Abdulkadir (School of Chemical Engineering and Analytical Science, The University of Manchester) ;
  • Shahidzadeh, Noushine (Institute of Physics, WZI - University of Amsterdam) ;
  • Stitt, Hugh (Johnson Matthey Technology Centre) ;
  • Shokri, Nima (School of Chemical Engineering and Analytical Science, The University of Manchester)
  • Received : 2018.05.21
  • Accepted : 2018.06.20
  • Published : 2018.11.25

Abstract

The effect of surfactants with different chain length on the drying dynamics of nanosized dispersion droplets and on the final morphology of the grains formed after water evaporation is investigated experimentally. An acoustic levitator was used to examine the drying dynamics of single droplets and SEM imaging was used to characterise the morphology of the final dried grains. Results show that the drying of drops with high molecular weight surfactants leads to more irregular grains and that the grain morphology is related to surface tension driven instability of the evaporating droplets which may lead to formation of hollow dried grains.

Keywords

References

  1. I. Kralova, J. Sjoblom, J. Dispers. Sci. 30 (2009) 1363. https://doi.org/10.1080/01932690902735561
  2. D.R. Karsa, Industrial Applications of Surfactants IV, The Royal Society of Chemistry, Cambridge, 1999.
  3. I. Som, K. Bhatia, M. Yasir, J. Pharm. BioAllied Sci. 4 (2012) 2. https://doi.org/10.4103/0975-7406.92724
  4. N. Kumar, R. Tyagi, Cosmetics 1 (2014) 3.
  5. K. Osei-Bonsu, P. Grassia, N. Shokri, Fuel 203 (2017) 403. https://doi.org/10.1016/j.fuel.2017.04.114
  6. K. Osei-Bonsu, N. Shokri, P. Grassia, Colloid Surf. A 481 (2015) 514. https://doi.org/10.1016/j.colsurfa.2015.06.023
  7. R. Vehring, W.R. Foss, D. Lechuga-Ballesteros, Aerosol. Sci. 38 (2007) 728. https://doi.org/10.1016/j.jaerosci.2007.04.005
  8. D.E. Walton, Dry. Technol. 18 (2000) 1943. https://doi.org/10.1080/07373930008917822
  9. M. Alder, M. Unger, G. Lee, Pharm. Res. 17 (2000) 863. https://doi.org/10.1023/A:1007568511399
  10. E. Lintingre, F. Lequeux, L. Talini, N. Tsapis, Soft Matter 11 (2016) 7435.
  11. F. Iskandar, L. Gradon, K. Okuyama, J. Colloid Interface Sci. 265 (2003) 296. https://doi.org/10.1016/S0021-9797(03)00519-8
  12. K. Master, Spray Drying Handbook, fifth ed., Longman Scientific & Technical, England, 1991.
  13. R. Vehring, Pharm. Res. 25 (2008) 999. https://doi.org/10.1007/s11095-007-9475-1
  14. D. Sen, J. Bahadur, S. Mazumder, S. Bhattacharya, Soft Matter 8 (2012) 10036. https://doi.org/10.1039/c2sm26493e
  15. J. Bahadur, D. Sen, S. Mazumder, B. Paul, A. Khan, G. Ghosh, J. Colloid Interface Sci. 351 (2010) 357. https://doi.org/10.1016/j.jcis.2010.07.074
  16. W.J. Walker, J.S. Reed, S.K. Verma, J. Am. Ceram. Soc. 82 (1999) 1711. https://doi.org/10.1111/j.1151-2916.1999.tb01990.x
  17. G. Bertrand, C. Filiatare, H. Mahdjoub, A. Foissy, C. Coddet, J. Eur. Ceram. Soc. 23 (2003) 263. https://doi.org/10.1016/S0955-2219(02)00171-1
  18. O.D. Velev, A.M. Lenhoff, E.W. Kaler, Science 287 (2000) 2240. https://doi.org/10.1126/science.287.5461.2240
  19. J. Bahadur, D. Sen, S. Mazumder, B. Paul, H. Bhatt, S.G. Singh, Langmuir 28 (2012) 1914. https://doi.org/10.1021/la204161d
  20. D.E. Walton, C.J. Mumford, Trans. Inst. Chem. Eng. 77 (1999) 442. https://doi.org/10.1205/026387699526296
  21. L. Pauchard, Y. Couder, Europhys. Lett. 66 (2004) 667. https://doi.org/10.1209/epl/i2003-10242-8
  22. N. Shahidzadeh, M.F.L. Schut, J. Desarnaud, M. Prat, D. Bonn, Sci. Rep. 5 (2015) 10335. https://doi.org/10.1038/srep10335
  23. S.S. Datta, H.C. Shum, D.A. Weitz, Langmuir 26 (2010) 18612. https://doi.org/10.1021/la103874z
  24. N. Fu, M.W. Woo, X.D. Chen, Dry. Technol. 30 (2012) 1771. https://doi.org/10.1080/07373937.2012.708002
  25. Y. Sano, R.B. Keey, Chem. Eng. Sci. 37 (1982) 881. https://doi.org/10.1016/0009-2509(82)80176-0
  26. D.H. Charlesworth, W.R.J. Marshall, AIChE J. 6 (1960) 9. https://doi.org/10.1002/aic.690060104
  27. K.A. Baldwin, D.J. Fairhurst, Colloids Surf. A 441 (2014) 867. https://doi.org/10.1016/j.colsurfa.2012.10.049
  28. W.E. Ranz, W.R.J. Marshall, Chem. Eng. Prog. 48 (1952) 141.
  29. D.H. Shin, J.S. Allen, C.K. Choi, S.H. Lee, Langmuir 31 (2015) 1237. https://doi.org/10.1021/la504133h
  30. P.A. Kralchevsky, K. Nagayama, Langmuir 10 (1994) 23. https://doi.org/10.1021/la00013a004
  31. H.S. Rabbani, V. Joekar-Niasar, N. Shokri, J. Colloid Interface Sci. 473 (2016) 34. https://doi.org/10.1016/j.jcis.2016.03.053
  32. N. Tsapis, E.R. Dufresne, S.S. Sinha, C.S. Riera, J.W. Hutchinson, L. Mahadevan, D. A. Weitz, Phys. Rev. Lett. 94 (2005) 018302. https://doi.org/10.1103/PhysRevLett.94.018302
  33. S. Lyonnard, J.R. Bartlett, E. Sizgek, K.S. Finnie, T. Zemb, J.L. Woolfrey, Langmuir 18 (2002) 10386. https://doi.org/10.1021/la020077w
  34. D. Sen, J.S. Melo, J. Bahadur, S. Mazumder, S. Bhattacharya, S.F. D'Souza, H. Frielinghaus, G. Goerigk, R. Loidl, Soft Matter 7 (2011) 5423. https://doi.org/10.1039/c1sm05100h
  35. E. Lintingre, G. Ducouret, F. Lequeux, L. Olanier, T. Perie, L. Talini, Soft Matter 11 (2015) 3660. https://doi.org/10.1039/C5SM00283D
  36. Y. Sugiyama, R.J. Larsen, J.-W. Kim, D.A. Weitz, Langmuir 22 (2006) 6024. https://doi.org/10.1021/la053419h
  37. C.-H. Lo, T.-M. Hu, Soft Matter 13 (2017) 5950. https://doi.org/10.1039/C7SM01043E
  38. C. Loussert, A. Bouchaudy, J.B. Salmon, Phys. Rev. Fluids 1 (2016) 084201. https://doi.org/10.1103/PhysRevFluids.1.084201
  39. A. Osman, L. Goehring, A. Patti, H. Stitt, N. Shokri, Ind. Eng. Chem. Res. 56 (2017) 10506. https://doi.org/10.1021/acs.iecr.7b02334
  40. S. Basu, A. Saha, R. Kumar, Appl. Phys. Lett. 100 (2012) 054101. https://doi.org/10.1063/1.3680257
  41. B. Pathak, S. Basu, Phys. Fluids 28 (2016) 123302. https://doi.org/10.1063/1.4971162
  42. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, 1981.
  43. V. Vandaele, P. Lambert, A. Delchambre, Precis. Eng. 29 (2005) 491. https://doi.org/10.1016/j.precisioneng.2005.03.003
  44. V. Goertz, N. Dingenouts, H. Nirschl, Part. Part. Syst. Char. 26 (2009) 17. https://doi.org/10.1002/ppsc.200800002
  45. J. Desarnaud, D. Bonn, N. Shahidzadeh, Sci. Rep. 6 (2016) 30856. https://doi.org/10.1038/srep30856
  46. D. Yu, F. Huang, H. Xu, Anal. Methods 4 (2012) 47. https://doi.org/10.1039/C1AY05495C
  47. A. Baran Mandal, B. Unni Nair, D. Ramaswamy, Langmuir 4 (1988) 736. https://doi.org/10.1021/la00081a041
  48. Y. Moroi, Y. Izaki, M. Saito, J. Colloid Interface Sci. 149 (1992) 322. https://doi.org/10.1016/0021-9797(92)90423-J
  49. A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, J. Fluid Mech. 399 (1999) 151. https://doi.org/10.1017/S0022112099006266
  50. S.M.S. Shokri-Kuehni, T. Vetter, C. Webb, N. Shokri, Geophys. Res. Lett. 44 (2017) 5504. https://doi.org/10.1002/2017GL073337
  51. N. Shokri, Phys. Fluids 26 (2014) 012106. https://doi.org/10.1063/1.4861755
  52. N. Shokri, P. Lehmann, P. Vontobel, D. Or, Water Resour. Res. 44 (2008) W06418.
  53. J.F. Davies, R.E.H. Miles, A.E. Haddrell, J.P. Reid, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 8807. https://doi.org/10.1073/pnas.1305277110
  54. J.F. Davies, A.E. Haddrell, R.E.H. Miles, C.R. Bull, J.P. Reid, J. Phys. Chem. A 116 (2012) 10987. https://doi.org/10.1021/jp3086667
  55. V.K. La Mer, Retardation of Evaporation by Monolayers, Academic Press, New York, 1962.
  56. M.J. Qazi, R.W. Liefferink, S.J. Schlegel, E.H.G. Backus, D. Bonn, N. Shahidzadeh, Langmuir 33 (2017) 4260. https://doi.org/10.1021/acs.langmuir.7b00244
  57. O. Annunziata, L. Constantino, G. D'Errico, L. Paduano, V. Vitagliano, J. Colloid Interface Sci. 216 (1999) 16. https://doi.org/10.1006/jcis.1999.6269
  58. Z. Chen, M. Liu, G.Y. Liu, L. Tan, Appl. Phys. Lett. 95 (2009) 223104. https://doi.org/10.1063/1.3269930
  59. W.-X. Shi, H.-X. Guo, J. Phys. Chem. B 114 (2010) 6365. https://doi.org/10.1021/jp100868p
  60. S.T. Milner, J.F. Joanny, P. Pincus, Europhys. Lett. 9 (1989) 495. https://doi.org/10.1209/0295-5075/9/5/015
  61. E. Khurana, S.O. Nielsen, M.L. Klein, J. Phys. Chem. B 110 (2006) 22136. https://doi.org/10.1021/jp063343d

Cited by

  1. Dynamics of Salt Precipitation on Graphene Oxide Membranes vol.19, pp.1, 2018, https://doi.org/10.1021/acs.cgd.8b01597
  2. Evaporation of a Droplet: From physics to applications vol.804, pp.None, 2019, https://doi.org/10.1016/j.physrep.2019.01.008
  3. Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying vol.12, pp.7, 2020, https://doi.org/10.3390/pharmaceutics12070625
  4. Controlling the drying-induced peeling of colloidal films vol.16, pp.36, 2020, https://doi.org/10.1039/d0sm00252f
  5. The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review vol.14, pp.1, 2018, https://doi.org/10.3390/en14010080